

Magnetic Order in S-substituted $\text{FeSe}_{1-x}\text{S}_x$ Thin Films Grown on LaAlO_3 Substrates

*Kazuki Miwa¹, Yuma Kawai¹, Fuyuki Nabeshima², Andreas Suter³, Zaher Salman³, Thomas Prokscha³, Atsutaka Maeda², and Tadashi Adachi¹

¹ Department of Engineering and Applied Sciences, Sophia University, Chiyoda, Tokyo 102-8554, Japan

² Department of Basic Science, University of Tokyo, Meguro, Tokyo 153-8902, Japan

³ PSI Center for Neutron and Muon Sciences, 5232 Villigen PSI, Switzerland

Abstract

Iron-chalcogenide superconductor FeSe does not exhibit a magnetic order but a nematic order at ambient pressure, whereas a magnetic order is induced by hydrostatic pressure [1]. In S-substituted $\text{FeSe}_{1-x}\text{S}_x$ in which the nematic transition temperature decreases monotonically with increasing x , it has been suggested that spin fluctuations develops around $x = 0.1$ [2]. In our former muon spin relaxation (μSR) measurements on $\text{FeSe}_{1-x}\text{S}_x$ thin films, it was observed that a short-range magnetic order was formed at low temperatures for $x = 0.3$ and 0.4 [3]. Therefore, to investigate spin fluctuations in the low S-concentration regime where the nematic order is formed, we fabricated $\text{FeSe}_{1-x}\text{S}_x$ thin films by pulsed laser deposition and performed μSR measurements using low-energy muons at PSI, Switzerland.

For $x = 0.1$, muon spin precession was observed at low temperatures, indicating the formation of a long-range magnetic order. This is likely because enhanced spin fluctuations are stabilized into a magnetic order by lattice strain originating from the substrate. Figure 1 shows the S-concentration dependence of the magnetic transition temperature T_m in $\text{FeSe}_{1-x}\text{S}_x$ thin films. For $x = 0$, a magnetic transition occurs at 80 K, and T_m decreases with increasing x . However, T_m increases for $x \geq 0.2$. This suggests a change in the magnetic state around $x = 0.2$.

References

- 1) M. Bendele et al. Phys. Rev. Lett. Vol.104, p087003, 2010
- 2) P. Wiecki et al. Phys. Rev. B Vol.98, p020507(R), 2018
- 3) F. Nabeshima et al. Phys. Rev. B Vol.103, p184504, 2021
- 4) F. Nabeshima et al. J. Phys. Soc. Jpn. Vol.87, p073704, 2018

Keywords: Iron-chalcogenide superconductor, $\text{FeSe}_{1-x}\text{S}_x$, Thin film, Low-energy muon

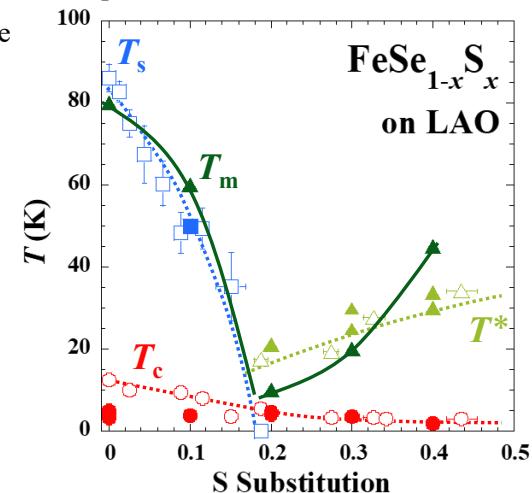


Figure 1 Phase diagram of $\text{FeSe}_{1-x}\text{S}_x$ thin films. Open symbols represent previous results [4]. T_c denotes the superconducting transition temperature, T_s the nematic transition temperature, T^* the kink temperature in the resistivity, T_m the magnetic transition temperature.