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1. Introduction

The concept of capacitive readout for ferroelectric (FE) memory technology has recently drawn considerable attention
for non-volatile memory (NVM) [1]. Unlike the traditional switching-driven readout scheme [2], the capacitive readout
features lower power consumption and non-destructive data sensing, which alleviates the burden on endurance strength.
However, the key to realizing capacitive readout is that the memory window (MW), i.e., high/low capacitance gap at 0 V,
should be sufficiently wide. Although some experimental demonstrations have been conducted with HfO,-based FE
materials [3-4], research works with capacitive readout are still lacking for nitride FE materials such as AIScN. With a
lower relative permittivity (&) of 11-19, AIScN holds a great advantage over HfO,-based and lead zirconium titanate (PZT)
FE materials with this scheme. Herein, we propose a simple metal-capping oxidation (MCO) process for AIScN thin films
with enhanced MW, thereby unlocking their potential for capacitive readout operation.

2. Experimental Methods

The structural diagram and process flow of AIScN capacitors are shown in Figs. 1(a) and 1(b), respectively. The
experimental procedures are similar to our previous work [5], except that we fabricated two FE layer thicknesses (25 and
50 nm). Additionally, we deployed the MCO process before top electrode deposition to indirectly oxidize the FE layer [6],
as described below. After FE deposition, a 3-nm W layer was capped on the FE layer and followed by rapid thermal
annealing (RTA) in O, ambient for 30 min at 400°C, which transforms metal W to dielectric WOx.

3. Results and Discussion

Fig. 2 depicts the polarization-electric field (P-E) hysteresis and current density-electric field (J-E) curves for all
capacitors, validating the FE characteristics. However, due to leakage current, positive-up negative-down (PUND) was
deployed, as displayed in Figs. 3(a) and 3(b). For 50-nm FE films, P, is enhanced at higher fields and exhibits good semi-
saturation by the MCO process. Similarly, for 25-nm FE films, considerably enhanced P, shows that the MCO process
could compensate for the deficit of worse crystallinity in thinner films [7], and thereby reaching 191 pC/cm? in maximum.
Moreover, a slight increase in E¢ values is observed in MCO-treated capacitors, as plotted in Fig. 3(c). Fig. 4 plots the
leakage and breakdown characteristics for all capacitors in the as-deposited state. Leakage suppression and breakdown
field (Eegp) improvements are observed in MCO cases, though the source of contribution still remains to be distinguished.
Involvement of the dielectric WO layer or partially oxidized AIScN FE layer could be the origin. Additionally, the
switching event becomes more pronounced for MCO capacitors, indicating that the initial N-polar state can be partially
inverted by extrinsic oxidation, in addition to incorporation of oxygen atoms during AIScN deposition [8].

Fig. 5 displays the butterfly-shaped capacitance-electric field (C-E) curves. Overall, & is generally decreased with the
MCO process, which is attributed to the insertion of a thin dielectric WOy layer. The permittivity at the cross-point (i) is
extracted and plotted in Fig. 6(a). The imprint effect is visable with MCO process, as &; values shift toward negative, and
possibly due to high defect density at the oxide/nitride interface. For capacitive readout, the MW is defined here as AC
and AC*, respectively, for as-deposited and 100-cycle-switched capacitors, as indicated in Fig. 5(d). With the MCO
process, AC is significantly increased for both 25 nm and 50 nm capacitors. Furthermore, AC* also demonstrated
robustness against write operations. It is speculated that the uprising AC and AC* with MCO process are related to a
modified switching mechanism by graded oxidization of FE AIScN. Nonetheless, ~4.2x enhancement of AC and AC* is
demonstrated, as summarized in Fig. 6(b).

4. Conclusions

In this work, we study the utilization of the MCO process in FE AIScN thin films to unlock the potential of non-
destructive capacitive readout in nitride FE materials. The results indicate that MCO not only boosts P, performance but
also suppresses leakage current while enhancing Egp. Owing to the thin dielectric WOx layer, ¢, is found to be slightly
decreased along with more pronounced imprint effects. Most importantly, MCO-treated FE AIScN films exhibit ~4.2x
increment of MW at zero electric field, which is beneficial for capacitive readout operation in future NVM technologies.
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fabricated AIScN capacitors.

Backside electrode (Al) evaporation

Fig. 1 (a) Schematic diagram and (b) process flow of
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Fig. 2 P-E and J-E curves for 50 nm AIScN (a) w/ and (b) w/o MCO process; 25 nm AlScN (c) w/ and (d) w/o MCO process.
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Fig. 3 PUND results for (a) 50 nm and (b) 25 nm capacitors. Fig. 4 Leakage and breakdown characteristics for (a)
(c) E. extracted by linear extrapolation from PUND [5]. 50 nm and (b) 25 nm capacitors.
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Fig. 5 Butterfly-shaped C-E curves for 50 nm AlIScN (a) w/ and (b) w/o MCO process; 25 nm AlScN (c¢) w/ and (d) w/o
MCO process. Solid lines and scattered points represent data from as-deposited and 100-cycle-switched capacitors.
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Fig. 6 Comparison of (a) g and (b) AC among all capacitors.
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