

# InGeO:F Channel Engineering by Fluorination Based on a GeO<sub>2</sub> Buffer Layer with Enhanced Mobility and Negative-Bias Stability

Shundong Hu<sup>1,2,3†</sup>, Jiayi Wang<sup>1,2,3,\*</sup>, Kuo Zhang<sup>1,2,3</sup>, Nannan You<sup>1,2,3</sup>, Yang Xu<sup>1,2,3</sup>, Ling Li<sup>1,3</sup>, Shengkai Wang<sup>1,2,3\*</sup>

<sup>1</sup>State Key Laboratory of Fabrication Technologies for Integrated Circuits, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China;

<sup>2</sup>High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China;

<sup>3</sup>University of Chinese Academy of Sciences, Beijing 10049, China. <sup>†</sup>Equal contribution.

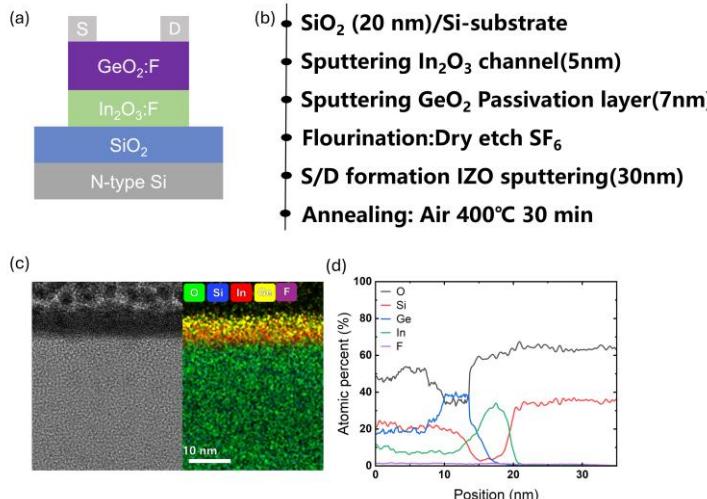
Email: wangjiayi2021@ime.ac.cn; wangshengkai@ime.ac.cn

## 1. Introduction

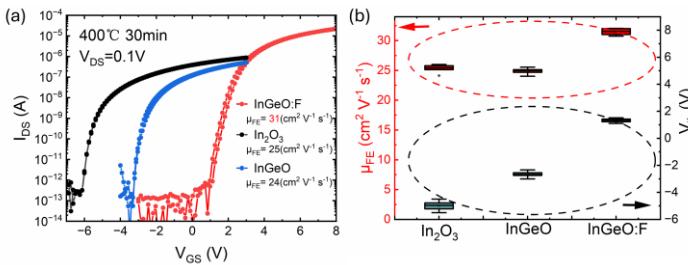
Indium oxide (In<sub>2</sub>O<sub>3</sub>)-based thin-film transistors (TFTs) have been widely used in flat panel display (FPD) and dynamic random-access memory (DRAM) owing to the high carrier mobility, low deposition temperature, and wide bandgap. Although shallow donor-like oxygen vacancies (V<sub>O</sub>) can provide electrons as carriers resulting in the high mobility nature of In<sub>2</sub>O<sub>3</sub>, the instability of V<sub>O</sub> compromises its reliability [1]. Previous studies mainly focused on cation doping to stabilize V<sub>O</sub>, studies on anion doping remain relatively limited. Here, we choose F as anion dopant due to its highest electronegativity to strengthen the overall metal to anion (M-X) bond. Besides, F/O substitution may release electrons to improve mobility, while F/V<sub>O</sub> passivation is expected to enhance device stability. However, fluorination typically damages the surface of the oxide channel, resulting in the degradation of device performance. Based on our previous study, GeO<sub>2</sub> can effectively consume V<sub>O</sub> in In<sub>2</sub>O<sub>3</sub> [3]. Therefore, GeO<sub>2</sub> can be utilized as a buffer layer, which not only reduces the fluorination damage to the In<sub>2</sub>O<sub>3</sub> channel but also achieves controllable F incorporation. Electrical and material characterizations were conducted on three types of devices—pristine In<sub>2</sub>O<sub>3</sub>, GeO<sub>2</sub>-passivated In<sub>2</sub>O<sub>3</sub> (InGeO), and fluorinated GeO<sub>2</sub>-passivated In<sub>2</sub>O<sub>3</sub> (InGeO:F) TFTs—to reveal the F incorporation mechanism and its effect on the electrical characteristics of the InGeO:F transistors.

## 2. Device Fabrication

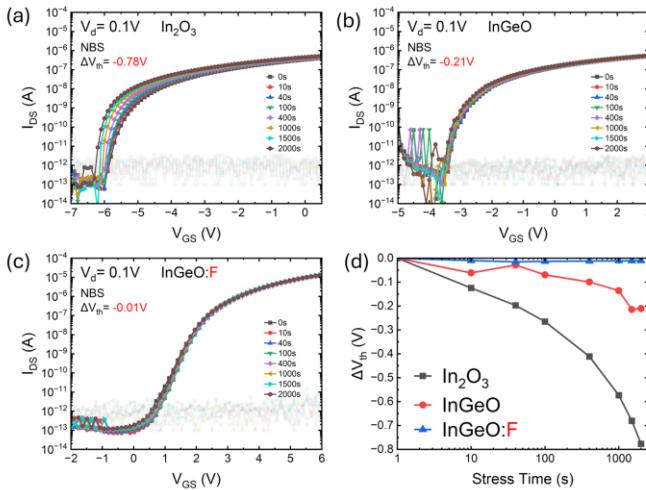
**Fig. 1(a)** and **(b)** present the structure and fabrication process of the InGeO: F TFT, where **Fig. 1(c)** shows its cross-sectional TEM image. The thicknesses of In<sub>2</sub>O<sub>3</sub> channel and GeO<sub>2</sub> buffer layer are 5 nm and 7 nm, respectively. The GeO<sub>2</sub>/In<sub>2</sub>O<sub>3</sub> stack was etched by SF<sub>6</sub> (15 sccm) at 15 W for 60 s. The IZO source/drain electrodes were then deposited. The channel W/L are 150/400  $\mu$ m, defined by shadow masks. Post-deposition annealing (PDA) was carried out in air at 400 °C for 30 min. **Fig. 1(d)** presents the linear energy-dispersive X-ray spectroscopy (EDS) scan, indicating F is successfully incorporated in the GeO<sub>2</sub> buffer layer and the In<sub>2</sub>O<sub>3</sub> channel.


## 3. Results and Discussion

**Fig. 2(a)** presents the transfer characteristics (I-V) of In<sub>2</sub>O<sub>3</sub>, InGeO, and InGeO:F TFTs. The threshold voltage (V<sub>th</sub>) and mobility ( $\mu_{FE}$ ) extracted from the I-V curves are plotted in **Fig. 2(b)**. The negative-bias stress (NBS) reliability tests were conducted for all three devices with applied V<sub>G</sub> = (V<sub>th</sub> - 4) V for 2000 s, which are displayed in **Fig. 3**. Key electrical factors including V<sub>th</sub>,  $\mu_{FE}$ , SS, and  $\Delta V_{th}$  extracted from **Fig. 2** and **3** are listed in **Table I**. Compared with the In<sub>2</sub>O<sub>3</sub> TFT, introducing a GeO<sub>2</sub> buffer layer (InGeO TFT) causes a positive shift in V<sub>th</sub> and a slight decrease in  $\mu_{FE}$ , while significantly reducing the  $\Delta V_{th}$  under applied NBS. This suggests that the GeO<sub>2</sub> layer effectively consumes V<sub>O</sub> in In<sub>2</sub>O<sub>3</sub> without introducing excessive ionized impurity scattering. For the fluorinated InGeO:F TFT, the GeO<sub>2</sub> buffer layer effectively mitigating plasma-induced damage to the In<sub>2</sub>O<sub>3</sub> channel, which exhibits the most positive V<sub>th</sub>, the highest  $\mu_{FE}$ , the lowest SS, and the smallest  $\Delta V_{th}$  under NBS (**Table I**). During fluorination, F<sup>-</sup> substitutes O<sup>2-</sup> and bonds with In<sup>3+</sup> resulting in a more rigid In-O-F frame, which not only suppresses the formation of new V<sub>O</sub> but also fills pre-existing ones, thereby reducing the background electron concentration and causing a positive shift in V<sub>th</sub>. Meanwhile, F eliminates V<sub>O</sub>-related scattering centers and improves the local lattice environment by forming stable In-F bonds [4], allowing electrons to transport more smoothly and thus significantly enhancing mobility. In addition, the passivation of V<sub>O</sub> and associated defect states lowers the trap-state density at the channel/interface, strengthens the gate control over the channel, and thus reduces SS. Under NBS conditions, the channel energy band bends upward, and neutral V<sub>O</sub> are easily activated into charged states, releasing electrons and inducing a negative shift in V<sub>th</sub> [5]. In contrast, the filling and passivation effect of F shifts the defect levels toward the valence band, effectively suppressing defect transformation and electron release, thereby significantly reducing  $\Delta V_{th}$  and enhancing device reliability.


To elucidate the origin of the performance enhancement after F doping, secondary ion mass spectrometry (SIMS) and X-ray photoelectron spectroscopy (XPS) were performed on the fluorinated GeO<sub>2</sub>/ In<sub>2</sub>O<sub>3</sub> stack (InGeO:F). The elemental depth profiles of InGeO:F films before and after annealing obtained by SIMS are shown in **Fig. 4**. For the fluorinated film, F accumulates within the GeO<sub>2</sub> layer. After PDA, F becomes uniformly distributed throughout the GeO<sub>2</sub> and In<sub>2</sub>O<sub>3</sub> layers and the overall F content decreases, which can be attributed to the desorption of volatile fluorides. This result highlights the buffer effect of GeO<sub>2</sub>: without the GeO<sub>2</sub> layer, F would directly penetrate and accumulate in In<sub>2</sub>O<sub>3</sub> during the initial fluorination stage, causing excessive ionic damage to the channel. The V<sub>O</sub> consumption by GeO<sub>2</sub> is also observed in InGeO:F. As shown in **Fig. 5(a)**, with the etching position approaches the GeO<sub>2</sub>/ In<sub>2</sub>O<sub>3</sub> interface from the surface, the Ge 2p3/2 peak gradually shifts from Ge<sup>4+</sup> to Ge<sup>2+</sup>, indicating the GeO<sub>2</sub>-to-GeO transformation. The deconvoluted Ge<sup>4+</sup> and Ge<sup>2+</sup> components ratio are plotted in **Fig. 5(b)**. **Fig. 6(a)** shows the In 3d peak shifts from In-O to In-F, confirming F is bonded In. In **Fig. 6(b)**, the intensity of O 1s remains nearly unchanged for the In<sub>2</sub>O<sub>3</sub> and InGeO film, but the peak position shifts toward higher binding energy due the binding energy of O in Ge-O is higher than that in In-O [6],[7]. After fluorination, the intensity of O 1s decreases significantly, indicating that part of O is replaced by F. The fluorination mechanisms are illustrated in **Fig. 7**: F incorporation in In<sub>2</sub>O<sub>3</sub> by both F/O substitution and F/V<sub>O</sub> passivation, forming stable In-F bonds while reducing the excessive V<sub>O</sub> defects, thereby improving channel conductivity and device stability. Meanwhile, during the fluorination process, the GeO<sub>2</sub> layer not only serves as a buffer to mitigate plasma-induced damage to the channel but also passivates V<sub>O</sub> in In<sub>2</sub>O<sub>3</sub>.

## 4. Conclusion

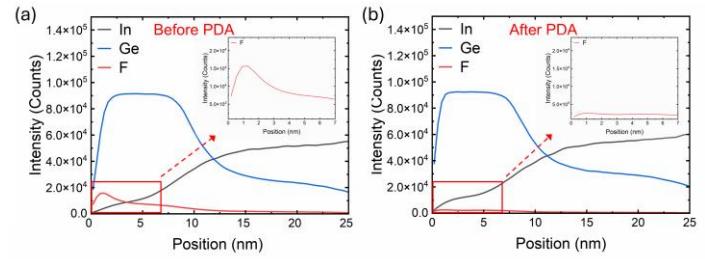

In this study, the GeO<sub>2</sub> buffer layer was introduced into In<sub>2</sub>O<sub>3</sub> films, followed by fluorination treatment. During fluorination, GeO<sub>2</sub> not only served as a buffer to effectively mitigate plasma-induced damage to the channel but also realized effective passivation of V<sub>O</sub> during the subsequent annealing process. Meanwhile, F incorporation forms stable In-F bonds. This process not only increase the stability of overall M-X frame but also significantly suppressed the formation and migration of V<sub>O</sub>. Consequently, the trap density was reduced, carrier scattering was weakened, and mobility was markedly enhanced, while the device exhibited improved stability under NBS.



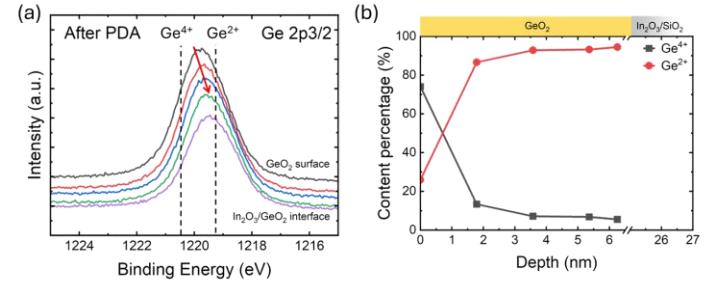
**Fig. 1** Structure and characterization of the InGeO:F TFT (fluorine-doped indium oxide thin-film transistor). (a) Schematic of the device structure; (b) fabrication process; (c) cross-sectional TEM image with a channel thickness of 6 nm; (d) linear energy-dispersive X-ray spectroscopy (EDS) scan.



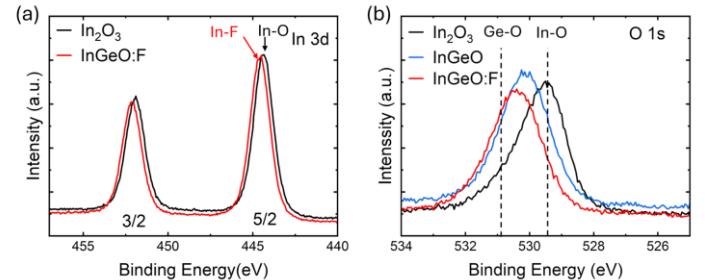
**Fig. 2** (a) Transfer characteristics of  $\text{In}_2\text{O}_3$  TFT,  $\text{GeO}_2$ -passivated  $\text{In}_2\text{O}_3$  TFT, and  $\text{GeO}_2$ -passivated  $\text{In}_2\text{O}_3$  TFT further treated with  $\text{SF}_6$  dry etching; (b) extracted threshold voltage and mobility from the transfer characteristics.



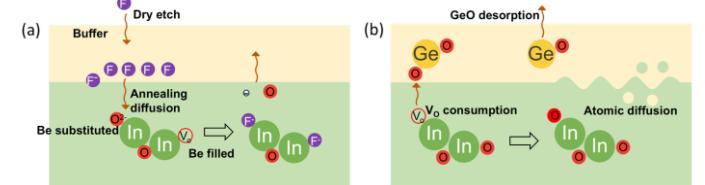

**Fig. 3** Negative-bias stress (NBS) test results of three types of TFTs: (a)  $\text{In}_2\text{O}_3$ , (b)  $\text{GeO}_2$ -passivated  $\text{In}_2\text{O}_3$ , and (c)  $\text{GeO}_2$ -passivated  $\text{In}_2\text{O}_3$  further treated with  $\text{SF}_6$  dry etching; (d) evolution of threshold voltage shift ( $\Delta V_{th}$ ) with stress time for the three devices.


**Acknowledgement:** This research was funded by National Key Research and Development Program of China (Project No. 2022YFB3603902), National Natural Science Foundation of China (Grant No. 62304248), Outstanding Member Project of the Youth Innovation Promotion Association of the Chinese Academy of Sciences (CAS) No. Y2021046, and International Partnership Program (for Future Network) of the Chinese Academy of Sciences (Grant No. 102GJHZ2022066FN).

**Table I** Characteristic parameters of  $\text{In}_2\text{O}_3$ ,  $\text{InGeO}$ , and  $\text{InGeO:F}$  TFTs, including  $\mu_{FE}$ ,  $V_{th}$ , SS, and  $\Delta V_{th}$  under NBS conditions.


|                         | $V_{th}$ (V) | $\mu_{FE}$ ( $\text{cm}^2 \text{V}^{-1} \text{s}^{-1}$ ) | SS (mV/dec) | NBS<br>$\Delta V_{th}$ (V) |
|-------------------------|--------------|----------------------------------------------------------|-------------|----------------------------|
| $\text{In}_2\text{O}_3$ | -4.96        | 25                                                       | 127         | -0.78                      |
| $\text{InGeO}$          | -2.67        | 24                                                       | 97          | -0.21                      |
| $\text{InGeO:F}$        | 1.25         | 31                                                       | 90          | -0.01                      |




**Fig. 4** SIMS elemental depth profiles of InGeO:F films before and after annealing.



**Fig. 5** (a) XPS depth profiling of the Ge-related peaks in the InGeO:F film; (b) variation of  $\text{Ge}^{4+}$  and  $\text{Ge}^{2+}$  valence state components as a function of depth.



**Fig. 6** XPS results: (a) In 3d spectra of  $\text{In}_2\text{O}_3$  and InGeO:F films; (b) O 1s spectra of the three films.



**Fig. 7** Schematic illustration of the mechanism underlying the performance enhancement of InGeO:F devices. (a) F substitutes O, releases electrons and reduce scattering; (b)  $\text{GeO}$  desorption during annealing.

#### Reference:

- [1] Ghaffarzadeh, K. *et al.*, Appl. Phys. Lett., 2010, **97**(11): p. 113504.
- [2] Jung, K-M. *et al.*, International Display Workshops, 2019.
- [3] Wang, Jiayi. *et al.*, VLSI Technology and Circuits, 2024.
- [4] Rosendal, V. *et al.*, Physical Review B, 2024.
- [5] Kim, Juwon. *et al.*, ACS Applied Electronic Materials. 2025.
- [6] Gabás, M. *et al.*, Applied surface science, 2012.
- [7] Rajendran, V. *et al.*, Engineering Reports, 2024.