

## Role of Annealing Atmosphere Towards Stoichiometry and Chemical Integrity of Solution-Processed MoS<sub>2</sub> Thin Films

Md Iftekharul Alam<sup>1</sup>, Shungo Nagata<sup>1</sup>, Jaehyo Jang<sup>2</sup>, Hayato Kosaka<sup>1</sup>, Naoki Matsunaga<sup>2</sup>, Yoshiteru Amemiya<sup>1</sup>, Ryo Yokogawa<sup>1</sup>, Hitoshi Wakabayashi<sup>1</sup>, Akinobu Teramoto<sup>1</sup>,

<sup>1</sup>Hiroshima Univ., <sup>2</sup>Institute of Science Tokyo

11-3-2 Kagamiyama, Higashihiroshima, Hiroshima 739-0046

Email: iftekhar@hiroshima-u.ac.jp / Phone: +81-82-424-6265

### 1. Introduction

Among various approaches, solution process is one of the quickest and simplest methods to produce MoS<sub>2</sub> thin films, compared to other techniques such as chemical vapor deposition (CVD), atomic layer deposition (ALD), and mechanical exfoliation [1-3]. However, their stoichiometry and chemical integrity are typically affected by sulfur vacancies (V<sub>s</sub>) that serve as reactive sites for oxygen incorporation and cause degradation in device performance [4]. Annealing in sulfur vapor (S-vapor) represents a promising technique toward the restoration of stoichiometry through sulfur replenishing and concurrent oxidation suppression. Herein, we demonstrate the solution-based synthesis of MoS<sub>2</sub> films on Si<sub>3</sub>N<sub>4</sub> surfaces with various precursor concentrations (5, 12, 16, 20, 25, and 30 mM) followed by annealing in argon (Ar) and sulfur vapor (S-vapor) at 700 °C. S-vapor annealed films achieved a near-ideal S/Mo ratio (~2:1) with significantly lower oxidation than Ar-annealed films, indicating the strong influence of annealing atmosphere on the stability of MoS<sub>2</sub>.

### 2. Experimental Procedure

Molybdenum disulfide (MoS<sub>2</sub>) films were prepared from a precursor solution via a single-step annealing in Ar and S-vapor atmospheres. The precursor solution was obtained by dissolving ammonium tetrathiomolybdate [(NH<sub>4</sub>)<sub>2</sub>MoS<sub>4</sub>, 99.999%, Sigma Aldrich] in a solvent mixture of dimethylformamide (DMF), isopropanol (IPA), and ethanamine with the 3:5:3 (v/v) ratio. The solution was stirred for 2 h, and spin-coated on clean Si<sub>3</sub>N<sub>4</sub> surfaces at 500 rpm for 10 s and 3000 rpm for 30 s. The Si<sub>3</sub>N<sub>4</sub> surfaces were treated with 0.5% HF for 60 s followed by rinse with DI water. The films were pre-annealed at 180 °C for 30 min and annealed at 700 °C for 1 h under 1 sdm Ar flow using a lamp annealing system. S-vapor annealing procedures are demonstrated in Fig. 1. The fabricated MoS<sub>2</sub> films were characterized using transmission electron microscopy (TEM), Raman spectroscopy, x-ray photoelectron spectroscopy (XPS) and thermal desorption spectroscopy (TDS) respectively.

### 3. Results and Discussion

To assess the stoichiometry and sulfur vacancy (V<sub>s</sub>) of the MoS<sub>2</sub> films, X-ray photoelectron spectroscopy (XPS) measurements were performed on both the surface and after 15 s etching, as illustrated in Fig. 2. At 5 mM, both films show sulfur deficiency (S/Mo ~2:1), but Ar-annealed films (Fig. 2a) remain sub-stoichiometric across all concentrations. In contrast, S-vapor annealed films (Fig. 2b) approach the ideal 2:1 ratio with increasing concentration and achieve homogeneous stoichiometry above 12 mM. These results confirm the effectiveness of S-vapor annealing in mitigating sulfur vacancies [5], despite minor surface oxidation upon air exposure.

The Mo<sup>6+</sup>/Mo<sup>4+</sup> ratios of Ar and S-vapor annealed MoS<sub>2</sub> films were obtained from the Mo 3d XPS spectra (Fig. 3). Ar-annealed MoS<sub>2</sub> films (Fig. 3a) undergo significant oxidation, with Mo<sup>6+</sup>/Mo<sup>4+</sup> ratios reaching a maximum at ~0.45 around 16 mM and persisting even after etching, indicating interfacial defects and oxygen incorporation. In contrast, S-vapor annealing keeps the ratio below 0.2 (slightly higher at the surface), yielding stoichiometric and chemically stable films above 12 mM as illustrated in Fig. 3b. These results confirm the superior oxidation resistance of S-vapor annealed MoS<sub>2</sub>. Sulfur vacancies in MoS<sub>2</sub> strongly affect its electronic properties and also promote environmental degradation through oxidation. To investigate the impact of these vacancies and the subsequent adsorption of O<sub>2</sub> and H<sub>2</sub>O molecules, density functional theory (DFT) calculations were performed as shown in Fig. 4. PDOS analysis shows that pristine MoS<sub>2</sub> with a band gap (E<sub>g</sub>) of 1.7 eV, has a S-3p dominated valence band and a Mo-4d dominated conduction band with no mid-gap states. Introducing a sulfur vacancy reduces the band gap to 1.3 eV and creates Mo 4d defect states near the Fermi level. O<sub>2</sub> adsorption slightly recovers the gap (1.5 eV) but leaves residual states, indicating poor passivation. In contrast, H<sub>2</sub>O adsorption restores the gap to 1.74 eV, effectively suppressing defect states and providing better passivation.

### 4. Conclusions

In conclusion, S-vapor annealing is essential for repairing sulfur vacancies, suppressing oxidation, and achieving near-stoichiometric, crystalline MoS<sub>2</sub> films. This post-synthesis treatment offers a reliable route to structurally and chemically stable MoS<sub>2</sub> for future electronic applications.

### Acknowledgements

This was supported by MEXT Initiative to Establish Next-generation Novel Integrated Circuits Centers (X-NICS) with grant numbers of JPJ011438.

### References

- [1] Alam M. I. et al., *Sci Rep* **2024**, *14* (1), 26779.
- [2] Yun J.-M. et al., *J Mater Chem C Mater* **2013**, *1* (24), 3777.
- [3] Yang, J.; Gu, Y. et al., *Nanoscale* **2015**, *7* (20), 9311–9319.
- [4] Liang, Q. et al., *ACS Nano* **2021**, *15* (2), 2165–2181.
- [5] Zhang, X. et al., *Chem Soc Rev* **2015**, *44* (9), 2757–2785.



Fig. 1: (a) Schematic of the two-zone furnace setup used for sulfur annealing of MoS<sub>2</sub> films and (b) Temperature vs time profile of annealing process.

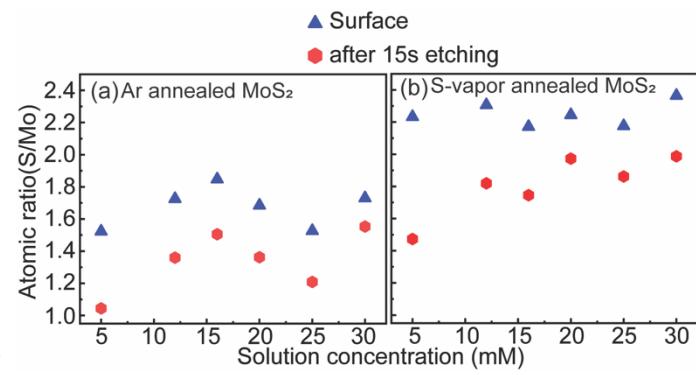



Fig. 2: Sulfur-to-molybdenum (S/Mo) atomic ratio of MoS<sub>2</sub> films as a function of precursor concentration, extracted from XPS of Mo 3d: (a) Ar-annealed and (b) S vapor-annealed films at 700 °C.

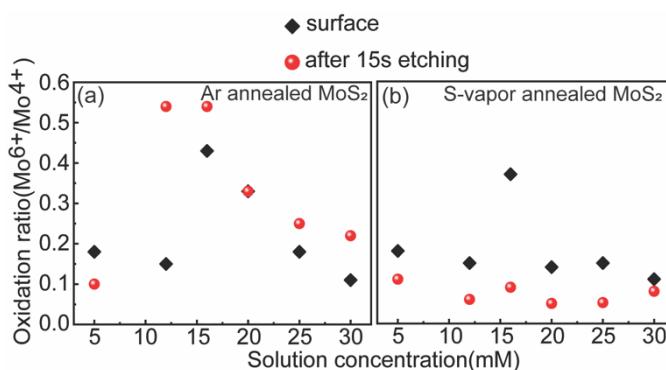



Fig. 3: Mo<sup>6+</sup>/Mo<sup>4+</sup> ratio as a function of solution concentration, extracted from Mo 3d XPS spectra of MoS<sub>2</sub> films grown on Si<sub>3</sub>N<sub>4</sub> surfaces using (a) Ar annealing and (b) S vapor annealing at 700 °C.

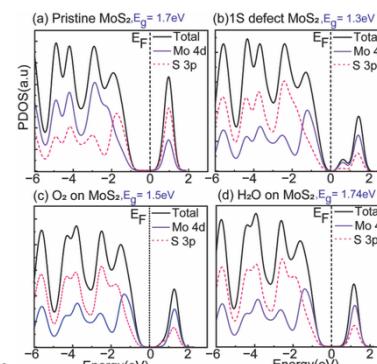



Fig. 4: PDOS (Projected Density of States) plots for MoS<sub>2</sub> with various surface treatments: (a) Pristine MoS<sub>2</sub> (b) Sulfur defect (1S) defect MoS<sub>2</sub> (c) O<sub>2</sub> adsorbed MoS<sub>2</sub> and (d) H<sub>2</sub>O adsorbed MoS<sub>2</sub> respectively.