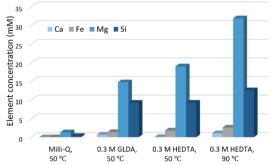
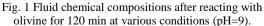
キレート剤の存在におけるアルカリ条件下での ケイ酸塩鉱物の溶解挙動

王佳婕*・渡邉則昭・土屋範芳(東北大・環境)


Dissolution behaviors of silicate minerals in the presence of chelating agents under alkaline conditions


Jiajie Wang*, Noriaki Watanabe, Noriyoshi Tsuchiya (GSES, Tohoku Univ.)

The dissolution behaviours of silicate minerals have been considered by a lot of studies in part due to their potential to aid in carbon storage. Acid conditions are usually applied to promote silicate minerals dissolution; however, the dissolution is easily suppressed due to the formation of silica-rich surface layers as a result of the incongruent dissolution of cations and Si. Due to the strong ability to bind metals at acid to alkaline pHs, chelating agents are used in this study to investigate their potential in promoting silicates dissolution under alkaline conditions. The dissolution behaviours of olivine and basalt in the presence of chelating agents N,N-Dicarboxymethyl glutamic acid tetrasodium salt (GLDA) and hydroxyethylethylenediaminetriacetic acid (HEDTA), will be clarified through experiments.

Experimental results found a significant enhancement in olivine and basalt dissolutions in the presence of either GLDA or HEDTA. For instance, the including of 0.3 M GLDA and 0.3 M HEDTA promoted Mg extraction from olivine by 11.3 and 14.6 times in 120 min, respectively; at the same time, Si extractions were also enhanced by ~27 times (Fig. 1). These values can further increase with temperature and reaction time. Moreover, the (Mg+Fe)/Si atomic ratios in extraction solutions with chelating agents were lower, for instance, 1.74 in 0.3 M GLDA solution, while that in Milli-Q water extraction solution was 3.96 (Fig. 2). The low (Mg+Fe)/Si ratio may suggest the suppressed formation of silica-rich layers, which is consistent with SEM observation that Si was not enriched on the surface of the mineral after reacting with GLDA.

Basalt dissolution experiments suggest that GLDA and HEDTA have favoured different elements extractions. GLDA has a better performance in extracting Ca and Si than HEDTA, while HEDTA is more suitable for Mg, Al and Fe extraction. Therefore, a mixture of GDTA and HEDTA solution with certain ratios is suggested for basalt dissolution. No significant changes in mineral compositions during extraction process using chelating agents implies the simultaneous consumption of minerals in basalt, i.e., pyroxene, feldspar, olivine, etc.

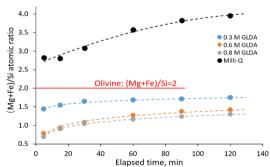


Fig. 2 (Mg+Fe)/Si ratio in solution after reacting with Milli-Q water or GLDA solutions (50 $^{\circ}$ C, 120 min, pH=9).

Keywords: silicate minerals, dissolution, chelating agent, alkaline condition

*Corresponding author: wang.jiajie.e4@tohoku.ac.jp