S2-07

2022 Annual Meeting of Japan Association Mineralogical Sc...

キレート剤存在下での結晶構造によるケイ酸塩鉱物溶解への影響

王佳婕*、Astin Nurdiana、土屋範芳(東北大・環境)

Silicate minerals dissolution behaviours and reordered preference in the

presence of a chelating agent

Jiajie Wang*, Astin Nurdiana, Noriyoshi Tsuchiya (GSES, Tohoku University)

The rates of mineral dissolution contribute to many geochemical processes and phenomena, such as geothermal

exploration and CO₂ mineralization by reacting with leached Ca and Mg ions, the latter is one of the crucial ways

to reduce atmospheric CO₂ concentration. Recently, the remarkable enhancement of mineral dissolution using

chelating agents is increasingly reported. To clarify the issues that arise accordingly, i.e., the dissolution behaviours

of various minerals in chelating agent solutions, basic dissolution experiments using 2 wt.% GLDA-Na₄ (N,N-

Dicarboxymethyl glutamic acid tetrasodium salt) solution and seven minerals, i.e., olivine, epidote, tourmaline,

enstatite, hornblende, biotite and anorthite, respectively belonging to seven major silicate groups, were conducted

in this study, at the room temperature and pressure.

The rate of Si and Al being released from per unit area of mineral surface (e.g., mmol/m²min), which is often

used to present the mineral dissolution rate, was generally higher in acid GLDA solutions (pH of 4) than in alkaline

GLDA solutions (pH of 8), during 120 min reactions, due to the joint effect of proton and the chelator. Moreover,

at pH 4, the rate of Al being released from minerals was higher than that of Si, whereas at pH 8, except for biotite,

Si leaching was preferred. At both pH 4 and 8, among the 7 types of silicates, the extractions in Si+Al and in divalent

cations (i.e., Ca, Mg, Fe, Mn) showed a similar sequence: phyllosilicate biotite dissolved the fastest, followed by

olivine (nesosilicate), anorthite (tectosilicates), tourmaline (cyclosilicate), epidote (sorosilicate), enstatite

(inosilicates: single-chain), hornblende (inosilicates: double-chain). Biotite, the dissolution rate has been reported

to be slower than pyroxenes, showed a remarkable increase in the presence of GLDA, regardless of the solution pH.

This kind of enhancement in biotite dissolution, as well as reordered mineral dissolution preference in chelating

agent solution may potentially contribute to the application of chelating agents for rock dissolutions and elements

extractions, and further studies will be focused on developing a better understanding of the relationship between

minerals lattices and chelating agent attacks.

Keywords: Silicates, Minerals, Dissolution, Chelating agent

*Corresponding author: wang.jiajie.e4@tohoku.ac.jp (J.W.)