熱量測定を用いたMgAl₂O₄スピネルの陽イオン無秩序に関する研究

Calorimetric study of cation disordering in MgAl₂O₄ spinel

- *糀谷 浩¹、松木 龍志¹、大平 格¹
- *Hiroshi KOJITANI¹, Ryuji MATSUKI¹, Itaru OHIRA¹
- 1. 学習院大・理
- 1. Gakushuin Univ. Sci.

スピネル型酸化物 AB_2O_4 において、四面体型と八面体型の陽イオンサイト間で陽イオンAとBの交換反応: $(A)^{\text{tet}}+[B]^{\text{oct}}$ $(B)^{\text{tet}}+[A]^{\text{oct}}$ を考え、四面体サイトを占めるBイオンのモル分率をxとしたとき、一般的な化学式は $(A_{1-x}B_x)[B_{2-x}A_x]O_4$ と表される。xは無秩序の程度と呼ばれる。この交換反応において、完全秩序化状態のx=0とある無秩序状態xとのギブスエネルギー差 ΔG_D が最も大きな負の値(極小値)となるところが平衡状態であることから、 $d\Delta G_D/dx=d\Delta H_D/dx-T$ ($d\Delta S_D/dx$)=0よりxとTの関係式:

 $RTln[x^2/(1-x)(2-x)] = -\Delta H_D/dx$ (1)

が導かれる。 ΔH_D および ΔS_D は、無秩序化のエンタルピーとエントロピーである。そして、 ΔS_D は実質的に完全ランダムを仮定した配置のエントロピーに等しいとしている。 スピネル型構造の名前の由来でもある $MgAl_2O_4$ スピネルにおいては、地質温度計としての有用性からx-T関係を明らかにする試みが多くの研究者によってなされてきた。しかしながら、室温下のNMR測定や単結晶X線回折測定でxが決定されているものの、xが凍結されている温度は不明であった(例えばMillard et al., 1991; Andreozzi et al., 2000)。また、高温その場NMR測定によるx-T関係の直接決定(Maekawa et al., 1997)もあるが、データのばらつきが大きい。したがって、 $MgAl_2O_4$ スピネルについてのx-T関係は未だに明確にはなっていない。本研究では、x が既知な $MgAl_2O_4$ 試料について落下溶解熱測定を行うことにより ΔH_D を決定し、式(1)よりx-T関係を制約することを試みた。

MgO: Al_2O_3 = 1:1(モル比)の混合物をペレットにし、1773 Kで14時間加熱してMgAl $_2O_4$ スピネルを合成した。それを973 Kで600時間、1373 Kで47時間、または1973 Kで17時間アニール後、急冷した3種類の試料を準備した。それぞれについてリートベルト解析により酸素の原子座標パラメータuを決定し、Andreozzi and Princivalle (2002)によるx-u関係からxの値を求めた。落下溶解熱測定にはカルベー型高温微少熱量計を用いた。978 Kの熱量計内に置かれたホウ酸鉛($2PbO\cdot B_2O_3$)溶媒に熱量計の外からペレット状に固めた約3 mgの試料を落下させ、室温から978 Kまでの熱含量と溶解エンタルピーの和である落下溶解エンタルピー(Δ H_{ds})を測定した。なお、試料の溶解促進のためにArガスを使った泡により溶媒を攪拌させた。

リートベルト解析の結果から得られたuより、973、1373、または1973 Kの各温度でアニールした試料の xは、それぞれ0.23、0.30、0.35と決定された。また、落下溶解熱測定を行った結果をFig. 1に示す。973、1373、または1973 Kでアニールした試料の ΔH_{d-s} は、それぞれ163.1±1.1、161.4±1.0、159.8±1.0 kJ/molと測定された。xの増加に伴い ΔH_{d-s} はほぼ直線的に減少する傾向が見られる。x=0の時に完全に 秩序化されたMgAl $_2$ O $_4$ スピネルを基準とすると、xの無秩序の程度を持つ試料は ΔH_D だけより高いエネル ギー準位にあるため、 ΔH_{d-s} はその分小さくなると解釈できる。このことを式で表すと

 $\Delta H_{d-s}(x) = \Delta H_{d-s}(x=0) - \Delta H_{D}(x) (2)$

となる。また、 ΔH_{d-s} とxの直線関係(つまり $\Delta H_D = \alpha x$)を仮定し、 ΔH_{d-s} (x=0)と α を変数として式(2)を最小二乗フィットすると、 ΔH_{d-s} (x=0) = 169.6(7) kJ/mol、 α = 28(2) kJ/molが得られる。よって、熱量測定から ΔH_D を決定する手法により、x-T関係は RTIn[x²/(1-x)(2-x)] = -28 と求められた。この式を用いて、熱測定試料のアニール温度である978、1373、1973 Kについてxを計算すると、それぞれ0.21(2)、0.32(2)、0.41(2)となる。1400 K付近まではxはアニール温度の状態でほぼ凍結されているが、それ以上の温度では急冷時にxの低下が起こっていることが示唆される。このことはAndreozzi and Princivall (2002)により示されたMgAl $_2$ O $_4$ スピネルの陽イオン無秩序のカイネティクスと調和的である。

キーワード: MgAl2O4、スピネル、落下溶解熱測定、陽イオン無秩序 Keywords: MgAl2O4, spinel, drop-solution calorimetry, cation disorder

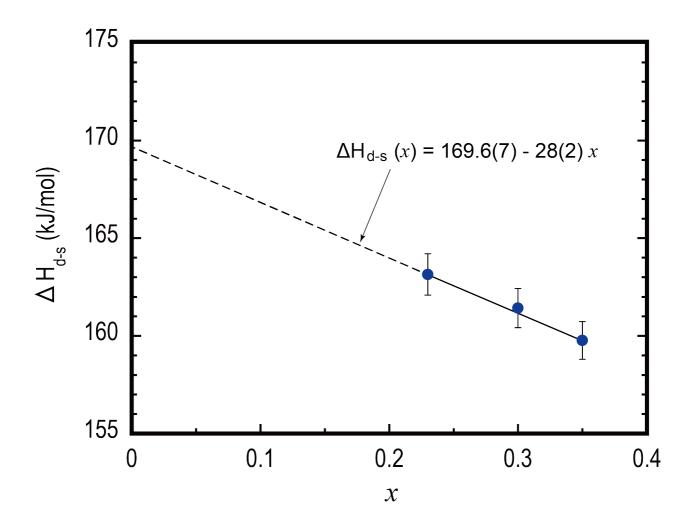


Fig. 1. $MgAl_2O_4$ スピネルの無秩序の程度 x と落下溶解エンタルピーの関係