マントル鉱物Ir₂S₃ kashiniteとRh₂S₃ bowieiteの合成と 単結晶構造解析

Syntheses and single crystal structure analyses of Ir₂S₃ kashinite and Rh₂S₃ bowieite

- *吉朝 朗¹、徳田 誠¹、北原 銀河¹、石丸 聡子¹、中塚 晃彦²、杉山 和正³
 *Akira YOSHIASA¹, Makoto Tokuda¹, Ginga Kitahara¹, Satoko Ishimaru¹, Akihiko Nakatsuka², Kazumasa Sugiyama³
- 1. 熊本大学、2. 山口大学、3. 東北大学
- 1. Kumamoto University, 2. Yamaguchi University, 3. Tohoku University

 Ir_2S_3 kashinite- Rh_2S_3 bowieiteは連続固溶体を形成し、アクセサリ鉱物としてマントル岩に広く産出する。Lauriteなどの白金族鉱物はマントル岩の分類に役立つが、各鉱物の結晶学的詳細については知られていないことが多い (Arai et al. 1999, Zaccarini et al., 2016)。 Rh_2S_3 の構造はParthe et al. (1967)により解析されているが Ir_2S_3 の報告は無い。これらは Rh_2O_3 の高圧相と同構造である。単結晶構造解析ではDebye-Waller因子からDebye温度 θ_D を見積もることができる。Debye温度は硬度や融点に関連した物質の固有値である。

 Ir_2S_3 kashiniteと Rh_2S_3 bowieiteの端成分単結晶を封入管法により作製し、リガク社製XtaLAB Synergyによる単結晶構造解析を行い、Debye-Waller因子を測定した[1]。 kashiniteとbowieiteはいずれも化学組成は単純であるが、複雑な結晶構造を有している(図 1)。歪んだ陽イオン八面体は、隣接する八面体と 1 つの面を共有して R_2S_3 ユニットを形成する。 R_2S_3 は隣接するユニットと4つのエッジを共有することで (100) に平行なスラブを形作る。精密構造解析により得られたDebye-Waller因子から、Debye温度 R_2S_3 を決定した。中央海嶺下のマグマだまりの底部で形成されたマントル岩に由来した(Osanai et al. 2014)熊本県払川産 kashinite-bowieite固溶体についてDebye温度を基に議論する。

キーワード: Ir2S3 kashinite、Rh2S3 bowieite、単結晶構造解析、Debye 温度、マントル構成鉱物 Keywords: Ir2S3 kashinite, Rh2S3 bowieite, single crystal diffraction, Debye temperature,, Mantle constituent mineral

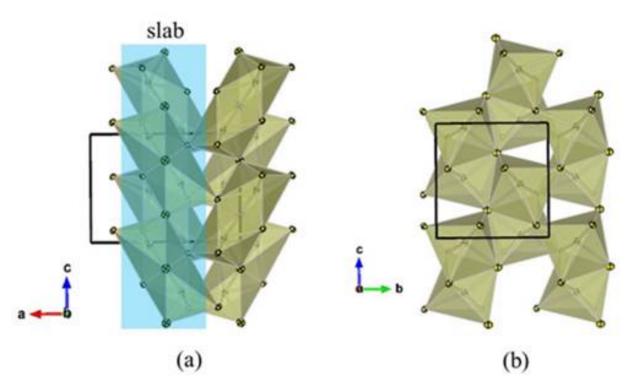


Fig. 1. Crystal structure of Ir₂S₃ view parallel to the crystallographic axes. The distorted IrS₆ octahedron forms an Ir₂S₉ unit by sharing one face with the adjacent octahedron (a). Ir₂S₉ becomes a slab parallel to (100) by sharing four edges with adjacent units (b).