5 族金属酸化物クラスター塩基触媒の特異な耐水性

(東京都大 1*) ○永仮 広樹 1*, 吉川 聡一 1* 中谷 直輝 1*, 山添 誠司 1*

金属酸化物クラスター, $[Nb_6O_{19}]^8$ -は塩基触媒として Knoevenagel 縮合(KC)反応や CO_2 固定化反応に活性を示す $^{1)}$. 本研究では, $[Nb_6O_{19}]^8$ -の塩基触媒活性点の大気中の H_2O や CO_2 に対する耐性を,KC 反応により評価した。 $[Nb_6O_{19}]^8$ -の TBA 塩(Nb6)は, Nb_2O_5 · nH_2O を前駆体として,10%TBAOH 水溶液中でのマイクロ波加熱により180°Cで水熱合成した。触媒反応は DMSO 中で行い,5 μ mol の Nb6 に対してフェニルアセトニトリル(pK_a =21.9)とベンズアルデヒドを各 1 μ mmol μ 0、10%0 存在下,大気雰囲気下で生成物収率

を比較したところ, 右図の通り N_2 雰囲 気下の Nb6 に比べ, H_2O や大気中の CO_2 存在下においても遜 色ない活性を示し た.以上の結果より, Nb6 の塩基触媒活性 点が H_2O や CO_2 に対 して耐性を示すこと を見出した.

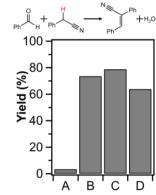


図 Nb6 の KC 反応の生成 物収率. A: Blank, B: N_2 雰 囲気下, C: H_2 O 添加, N_2 雰 囲気下 D: 大気雰囲気下.

1) S. Hayashi et al., J. Phys. Chem. C, 122, 29398 (2018).