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1．緒言 

  国連気候変動枠組条約締約国会議(COP)で宣言された

約束草案(INDC)の達成に向け，温室効果ガス(Greenhouse 

Gas)を削減する技術の開発が急がれる。CO2処理技術と

しては，CO2を有用資源に変える CCU(Carbon Dioxide 

Capture and Utilization)技術が取り上げられ1)、産業プロセ

スからの排出 CO2をメタン化反応（CO2＋4H2→CH4＋

2H2O，ΔH0＝－165 kJ/mol）で CH4資源に変換し、都市

ガスに利用する触媒反応プロセスが着目される。 

社会実装化に向けたメタン化プロセスの開発では、

① CO2処理を大量に行ないつつ、② 処理時に発生する

大きな発熱エネルギーの制御がポイントである。また、

③ 排ガスからの CO2の分離・濃縮操作が簡略化できれ

ばプラントに係わる経済的な削減が期待できる。 

 本受賞講演では、触媒機能促進の化学的要素と物

質・熱移動促進の物理的要素を融合した構造体触媒反

応システムが、上記①～③の項目を達成する革新的な

触媒反応プロセス2)になることを紹介し、触媒反応工学

に立脚したプロセス開発の重要性を述べる。加えて、

製造 CH4からの合成ガス(CO+H2)の製造とその後の固体

炭素捕集の連結型反応プロセス2)が、産業排ガスを有価

な炭素資源に効率的に変換することも説明する。 

 

2．大きな発熱を伴う触媒反応システムの課題 

  反応速度が速く、大きな発熱を伴うメタン化反応を

汎用の触媒充填型システムで実施する場合、発熱エネ

ルギーの効率的な除去と温度管理は難しい。理由は、

充填管内の対流伝熱による熱移動と内壁面上の境膜抵

抗の存在が効率的な熱除去を妨げるためである。 

図1は、円筒形の触媒充填型反応器によるメタン化反

応（Ni 系粒状触媒を充填）における器内温度分布の数

値シミュレーションである3)。図1(a)から、入口付近で

メタン化反応が急速に起こることと、設定温度のわず

かな違いが反応器の安定性を左右することがわかる。

すなわち、設定温度282 ℃では器内の温度上昇は最大

310 ℃であるが、わずか3 ℃上昇させた設定温度285 ℃で

はおよそ700 ℃近くまで温度が跳ね上がる。Niのタンマ

ン温度（590～690 ℃）を越えており、触媒失活や反応

器の暴走につながる。このような場合、反応管径を小

さくして熱除去の機能を高めようとするが、図1(b)から

わかるように、管径の変化は急激な温度上昇が始まる

供給ガス温度を数十℃程度変えるだけであり、いずれ

の管径でも管内は約700 ℃まで温度が上昇し、触媒機能

の失活を予想させる。大きな発熱で速度が速い反応の

場合、触媒充填型システムでは管内の対流伝熱と内壁

面上の境膜抵抗が伝熱律速となり、このような現象が

起こる。反応管内の伝熱効率を改善しない限り、管外

部からの冷却力を強くしただけでは対応ができない。

CO2処理量が多くなるほど、この課題は顕著になる。 

 

3．構造体触媒反応システムの利点 

  触媒機能と物質・熱移動制御を融合した構造体触媒

システムは、触媒充填型システムが抱える先の課題を

解決する。特にスパイラル形構造体触媒は、触媒上に

発生する旋回流れ(Swirl flow)がガス物質移動と熱移動を

加速して触媒性能をより一層に高める2,4,5)。 

図２は、スパイラル形触媒の一例であるが、加工し

たステンレス基材やアルミニウム基材上に Wash-coat 法

で触媒成分を塗布している。図３は、スパイラル形触

媒に N2ガスを供給したときの流れの CFD解析である。

基材上の流れの線速度をカラー等高線で表記した。ス

 
図１ 触媒充填型反応器によるCO2のメタン化反応時 

の器内温度分布のシミュレーション(Ni系触媒) 

 

図２ スパイラル形構造体触媒 
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パイラル形基材を縦に中心で割った(竹割り)状態の基材

表面上を見ると、ガス境膜層の厚みは流量が増加する

につれて薄くなる。触媒上での強力な旋回流れの発生

は、原料ガスと触媒との接触効率を高め、また反応熱

エネルギーの制御力も高める。そのことが、たとえ単

位体積当たりの触媒使用量が少なくとも、反応場に高

い物質変換力を付与することになる。 

3.1 構造体触媒システムの実排出ガスの処理力 

 図４は、構造体触媒システムで構築したラボレベル

のメタン化装置である。装置は反応場を二つ連結した

二連式反応器であり、各反応場には触媒成分(Ni/CeO2や

Ru/CeO2)を塗布したスパイラル形構造体触媒を設置した。

排ガスの処理量は最大10L/min である．図は小型発電機

からの排ガス処理の様子であるが、今回はセメント工

場内ロータリーキルンからの実排出ガスを供給した．

キルンの排ガス組成は、CO2 : CO : O2 : N2  = 15.3 : 0.2 : 10.4 : 

74.1 vol%（NOx: 590 ppm）である。排ガス中にはかなり

の酸素が含まれ、そのままの処理では触媒酸化による

活性劣化や生成メタンの燃焼が一般的に懸念される．

しかし、酸素共存下のメタン化反応では共存酸素がむ

しろ触媒活性を促進し(水素-酸素の燃焼エネルギーによ

る反応加速)、生成メタンは燃焼せず、外部加熱なしの

室温域でもメタン化反応が進行する．Auto-methanation®

現象6)の発現である。この知見をもとに、キルン実排ガ

ス1.0 L/minにH2: 0.83 L/minを供給してメタン化特性を評

価した。二つの反応場に設置した触媒は、Ru/CeO2成分

を塗布したスパイラル形構造体触媒(11 mm 幅×150 mm，

各3本，触媒量は各反応場とも1.0 g)である． 

図５は、得られたメタン化処理の結果である．図で

は、排ガス中のCO2とCOの物質流量(Initial carbon)を基準

とし、処理後(二番目反応場後)の残存 CO2と CO の割合

を各設定温度で示した。生成CH4収率も示した。図から、

設定温度100～200℃では排ガス中の CO2と CO が90～

98％の高い効率(トータル分)で削減され、CH4に変換し

ている．いずれの場合もメタン選択率はほぼ100%であ

り、生成CH4の燃焼はない．そして、外部加熱のない室

温域でも約85%の高い削減率である．通常のメタン化反

応は約220℃以上の熱供給が必要であるが、酸素が共存

したメタン化反応はこのように200℃以下の温度域で効

率的に作動する．特に、外部加熱のない室温域で高い

効率性を示したことは、本装置のCO2削減プロセスとし

ての価値を高める．それは、反応場の加熱のために0.4

～0.5kg-CO2/kWh(排出係数)の CO2排出が伴う電力が不要

なためである．加えて、200℃以下の工場排熱も利用で

き、CO2処理システムのプロセス強化となる．  

酸素共存下で生成CH4が燃焼しない要因は、可燃性ガ

スの最小着火エネルギー(Minimum ignition energy, MIE)の

 

図３ スパイラル形構造体触媒上のガス流れのCFD 

解析(N2ガス，500℃) 

 

図４ スパイラル形構造体触媒装備のメタン化装置 

 
図５ セメントキルン排ガスのメタン化処理特性 
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序列7)が考えられる．すなわち、H2-O2混

合ガスのMIEはCH4-O2混合ガスのそれよ

りも一桁小さく、メタン化装置に原料ガ

スが供給されると瞬時に H2-O2の燃焼反

応が起こり、熱エネルギーが発生する。

この場合、ガス流れの整流性を確保する

ことができる構造体触媒システムの利用

は、正しく制御された燃焼状態を確保

し、その後のメタン化反応へとスムーズ

な発熱エネルギーの供給を実現する。 

3.2 構造体触媒システムの温度分布 

構造体触媒反応システムによる高速メ

タン化処理時の温度制御特性について、

図４のメタン化装置による小型発電機か

らの実排ガス処理から評価した。 

図６は、その時の1番目と2番目反応場

の実測温度である。発電機からの排ガス

量は2.5 L/min、組成はCO2 : CO : N2  = 11 : 5 : 

84 vol%（炭化水素: 240 ppm）であり、こ

の排ガスにH2 : 2.4 L/minとO2 : 240 mL/min

を追加供給して auto-methanation®状態で処理した。総ガ

ス量は5.3 L/minであり、空間速度: 5,600 h-1、接触時間: 0.6

秒以下の高速処理である。このときの CO2転化率は約

72％、CH4選択率は100%であり、反応に伴う発熱エネル

ギーによる反応場の温度上昇が予測される(図中の触媒

充填型システムの温度分布はその一例)。しかし、構造

体触媒システムでは1番目の反応場で約500℃、2番目の

反応場で約430℃の最大温度を示しつつ、ガス流れ方向

にかけて全体的に大きく広がった分布である。スパイ

ラル形触媒による旋回流れの物質・熱移動の加速効果

が、高速なメタン化処理でも構造体触媒システムの特

性をより魅力的に引き出していることがわかる。 

 

4．CO2を合成ガスや固体炭素に変換する触媒反応工学 

 CO2をメタン化反応で CH4に変換した後、燃料ガスと

して燃やすことが考えられるが、結局CO2が排出される

ことになる。それを避けるためには、CH4変換プロセス

と他の反応プロセスとを組み合わせ、製造したCH4をさ

らに有用な物質へと資源変換することである。例えば、

メタン化反応プロセス⇒ドライ改質プロセス⇒固体炭

素捕集プロセスとした連結型プロセスは、排ガスCO2か

らのカーボンリサイクルを図る新たな触媒プロセス技

術を提供する8,9)。 

図７にそのリサイクルフローを示す。このプロセス

では産業排出 CO2を原料とし、CH4以外にも有用な合成

ガスや固体炭素を製造する循環プロセスとなっている。

特徴的なことは、メタン化後のドライ改質工程におい

てもCO2が必要となるのでメタン化プロセスは必ずしも

そのフルパワー化を求めず、むしろ半分のパワーでよ

い。そのためメタン化反応に必要な H2量は量論比：

H2/CO2＝４よりも少ない量で済み、メタン化プロセス

のコスト軽減につながる。また、捕集した固体炭素は

機能性材料に利用できる。 

図８は本概念で構築したラボレベルのカーボンリサ

イクル装置である。装置は、メタン化反応場⇒ドライ

改質場⇒固体炭素捕集場の連結型反応プロセスであり、

メタン化場(室温の auto-methanation®)にスパイラル形構造

体触媒(7 mmφ×100 mm長，2本，Ru/CeO2触媒の総量：

1.8 g)、ドライ改質場(700℃)にスパイラル形構造体触媒(7 

mmφ×55 mm 長，6本，Ni/CeO2系触媒の総量：0.9 g)、

そして固体炭素捕集場(470℃)に円筒形構造体触媒(25 

mmφ×50 mm長，5個，Fe系触媒の総量：0.5 g)を設置し

た。各触媒の還元処理後、模擬排ガス(CO2 : H2 : O2 : N2  = 

20 : 44-74 : 2 : 4-34 vol%）を流速2.0 L/minで供給し、各反応
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場の変換特性を評価した。 

図９は、ドライ改質場のCO2転化率について、最初の

１h はメタン化場＋ドライ改質場で、その後５h をメタ

ン化場＋ドライ改質場＋炭素捕集場(バルブ連結)で、そ

して再びバルブを切り替えてメタン化場＋ドライ改質

場で１h 実施したときの結果である。図では、メタン化

場に供給する原料ガス中 H2/CO2比を変化させている。

図から、最初の1時間は安定したドライ改質であり、捕

集場と連結することでCO2転化率は大きく低下した。こ

れは、炭素捕集場において2CO→C＋CO2の不均化反応

で固体炭素とCO2が生成しているためである。このとき

同時に CO+H2→C＋H2Oの還元反応でも固体炭素が析出

する。図10は、このときの炭素捕集率［＝捕集 C の物

質量（mol/h）÷メタン化場に供給した CO2の物質量

（mol/h）］である。図から、最適な H2/CO2は2.5~3.0であ

り、メタン化場への H2供給が量論比以下で充分である

ことがわかる。このことは H2使用量の削減になる。そ

して、捕集用 Fe 系触媒成分の最適化を図ったところ、

現在では捕集率60％まで高めることに成功した。 

また図11は、捕集した固体炭素の電子顕微鏡写真(捕

集温度：650℃)である。図から、捕集した固体炭素は

ファイバー状やナノチューブ状で形成されていること

がわかり、機能性炭素材への利用などが考えられた。

産業プロセスからの排出CO2ガスを利用する新たな展開

性が示唆される。 

図12は、メタン化場に投入した原料ガスのエクセル

ギーを基準として、構築した連結型反応システムの各

変換工程におけるエクセルギーの変化である。メタン

化場ではいずれの H2/CO2比もエクセルギーがかなり減

少している。メタン化反応だけでは H2使用の影響が大

 

図 11 捕集した固体炭素の電子顕微鏡写真(捕集：650℃) 

 

図８ カーボンリサイクルを図る連結型CO2処理装置 

 

図９ 連結型CO2処理装置のドライ改質に及ぼすH2/CO2 

比の影響 

 

図 10 連結型CO2処理装置のH2/CO2比による固体炭素 

捕集率の変化 
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きく、CO2変換としての単独メタン化プロセスはデメ

リット性が高いと判断される。しかし、ドライ改質場

と組み合わせると、有用な合成ガスが製造されるため

にエクセルギーが回復する。特に H2/CO2が2.5以下では

投入ガスのエクセルギー以上に回復している。固体炭

素捕集場でもエクセルギー値は維持されており、産業

プロセス排出のCO2をこのような連結型反応システムで

処理することのメリットが伺える。 

このような一連のCO2の資源変換を大多量かつ高効率

に実施するには、構造体触媒システムの優れた物質移

動性と高い熱制御性の採用がキーポイントである。特

に、スパイラル形触媒の反応工学的な特性(Swirl flow 効

果)はその機能特性をより加速する。従来の触媒充填型

反応システムでは成し得ない変換技術を提供すること

が考えられる。 

 

5．結言 

 大多量な温室効果ガス(CO2や CH4など)の工業的な処

理プロセスの構築では、触媒化学と反応工学の学理を

融合したアプローチが重要であることを講演者の例を

挙げて紹介した。一方、ここ数十年において両学理の

乖離が叫ばれて久しく、触媒化学はよりミクロ(ナノ)な

領域を、反応工学はよりマクロ(バルク)な領域を指向す

る傾向にある。今後のSDG’sの目標達成やCOP会議の

約束草案の実現、そして2050年までの CO2排出ゼロ宣言

を勘案すると、この乖離領域を対象としてこれまで以

上に両学理の融合化を図った触媒変換技術の開拓が求

められている。今回の構造体触媒システムによるCO2の

メタン化反応やドライ改質反応、そして固体炭素捕集

の技術は、そのような変換技術の一例になるものと考

えている。当然、この触媒システムを実際に構築し、

社会実装するまでには多くの課題解決が求められるが、

2030年までの時間がない現在においてはとにかく新し

い一歩を踏み出す必要があろう。関係の皆様方からの

貴重なご意見をいただきつつ、今後の展開に反映した

いと考えている。 
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