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1. 緒言 

 メタン酸化カップリング（ OCM）は、天然ガスの

主成分であるメタン（ CH4）と酸素（ O2）から、石油

化学工業の基幹化合物であるエタン（ C2H6）やエチ

レン（ C2H4）を直接得る反応である。現在、これら

の化合物は石油由来のナフサクラッキングによっ

て製造されているため、OCM は資源多様化の観点

から重要な代替技術である。しかし、メタンの C–H

結合の活性化には高い温度が必要とされ、メタンよ

りも反応性が高いエタンやエチレンは容易に二酸

化炭素へと逐次酸化されてしまう 1)。このため、OCM

は制御の難しい反応系である。常圧下では、Mn–

Na2WO4/SiO2が最も高い収率を示す OCM 触媒とし

て広く研究されているが、反応には 750–900°C程度

の高温が必要である 2) Fig. 1a）。 

 低温高圧条件（ <500°C、2–10 MPa）では、メタン

と酸素が自発的に反応し、メチルラジカル CH3
•）

を生成する。このラジカルを起点とする連鎖機構に

より、メタノールなどの部分酸化生成物が効率的に 

 

 

Fig. 1 (a–c) 従来と (d) 本研究のメタン酸化系. 

得られることが報告されている 3)（ Fig. 1b）。高温高

圧条件 550°C、6 MPa）では、エタンやエチレンな

どのカップリング生成物への選択率が増加するこ

とも示されている 4)（ Fig. 1c）。高圧メタン酸化系に

おけるメタノール収率を向上させるために、さまざ

まな触媒が提案されてきた 3)。これらの検討では、

触媒によりメタン活性化温度を低下させ、生成物の

逐次酸化を抑制することに注力してきた。しかし、

低温でもラジカル連鎖反応は高速で進行するため、

生成物の制御は依然として困難である。 

本研究では、高圧条件で進行する気相反応により

メチルラジカルを効率的に発生させ、触媒を用いて

メチルラジカルを選択的に生成物へと転換するこ

とを目指した Fig. 1d）。Na2WO4/SiO2触媒を用いて

高圧下でメタン酸化を行ったところ、OCMが 410°C

という低温で効率的に進行することを見出した。さ

らに、触媒表面での発熱反応が C2および C3化合物

 C2,3Hx）の選択率向上に重要な役割を果たすこと

を明らかにした。 

 

2. 実験方法 

2.1. 触媒調製 

Na2WO4/SiO2触媒は、焼成後の Na2WO4の担持量

が 10 wt%となるよう、incipient wetness 法により調

製した。まず、Na2WO4•2H2O（ 0.11 g）を脱イオン水

 2.0 mL）に溶解した。SiO2 富士シリシア化学株

式会社, CARiACT Q-10, 0.9 g）を蒸発皿に薄く広げ、

上記水溶液を滴下した後、100°C で乾燥し、さらに

800°C で 5 時間焼成して触媒を得た。他の触媒も

Na2WO4/SiO2触媒とW含有量が等しくなるよう、同

様の手法で調製した。得られた触媒のラマンスペク

トルを測定したところ、それぞれ M2WO4 M = Li, 

Na, K）またはWO3に由来するピークが観察され、

各タングステン酸化物の担持が確認された Fig. 2）。 

 

2.2. 高圧メタン酸化 

高圧メタン酸化は、高圧固定床流通反応装置を用

いて実施した（ Fig. 3a）。ステンレス製反応管内に石

英ウールで触媒を固定し、反応ガス（ 550 mL min−1）

を流通させた。反応管内の圧力は圧力計および背圧

弁により調整した。メタンと酸素の流量比は 10：1
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とし、メタンを過剰とすることで燃焼範囲から外れ

た領域で反応を行った。反応炉の後段は 200°Cに加

熱し、生成物の凝集を抑制した。生成物の定量はオ

ンライン GCにより行った。 

高圧メタン酸化は Fig. 3b に示す手順に従って進

めた。まず背圧弁により反応管内を 8.0 MPaまで昇

圧し、その後反応炉を 410°Cまで昇温した。一定時

間が経過するとラジカル反応が開始し、GC により

C2,3Hx や CH3OH、COx などの生成物が確認された。

その後、6.0 MPa まで減圧し、生成物の収量が安定

した時点で反応活性の評価を行った。 

 

 

Fig. 2 調製した触媒のラマンスペクトル. 

 

3. 結果および考察 

3.1. 高圧条件下でのメタン酸化カップリング反応 

 まず触媒を用いないブランク条件下で高圧メタ

ン酸化を行った Table 1）。6.0 MPa、410°Cの条件で

は酸素が完全に消費され、メタン転化率 6.8%に対し、

メタノールが 19%の選択率で得られた。一方、C2,3Hx

生成物はほとんど得られなかった。これに対し、

Na2WO4/SiO2 触媒を用いた場合も酸素は完全に消費

 

Fig. 3 (a) 高圧固定床流通反応装置の模式図. (b) 高

圧メタン酸化反応の実験手順. 

 

されたが、メタン転化率は 8.8%に増加し、C2,3Hxの

選択率は 44%に達した。さらに、ガス流量とともに

C2,3Hx の生成速度は増加し、2200 mL min−1 では 70 

mmol h−1 を達成した。Na2WO4/SiO2 触媒を用いた

800°C、常圧下の OCMでは、C2,3Hx選択率は 81%と

いう高い値を示したものの、C2,3Hx の生成速度は 6 

mmol h−1と一桁低い値であった。以上の結果から、

高圧条件では OCM が低温でも進行し、さらに高い

触媒負荷を与えることで C2,3Hx生成物を効率的に得

られることが示された。 

 

Table 1 様々な反応条件でのメタン酸化 

catalyst 
pressure 

(MPa) 

temperature 

(°C) 

flow 

(mL min−1) 

conversion (%) selectivity (%) C2,3Hx production rate 

 (mmol h−1) CH4 O2 C2,3Hx CH3OH COx 

- 6.0 410 550 6.8 >99 8 19 73 3 

SiO2 6.0 410 550 7.2 >99 7 25 68 3 

Na2WO4/SiO2 6.0 410 550 8.8 >99 44 1 55 24 

Na2WO4/SiO2 6.0 410 1100 8.1 >99 46 1 53 47 

Na2WO4/SiO2 6.0 410 2200 7.2 >99 38 1 61 70 

Na2WO4/SiO2 0.1 800 50 13 - 81 - 19 6 

反応条件：catalyst (0.5 g), CH4:O2 = 10:1.  
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3.2. Na2WO4/SiO2 触媒の役割 

 反応管内に熱電対を挿入して高圧 OCM 反応下の

触媒層温度を測定したところ、反応器設定温度が

410°Cであるのに対し、触媒層温度は 549°Cまで上

昇していた。550°C では、触媒を用いない条件にお

いても高圧 OCM が進行することが報告されており
4)、このことから反応相温度の上昇が C2,3Hx 選択率

の増加に寄与していると考えられる。一方、SiO2を

反応管内に導入した場合、生成物分布はブランク条

件とほぼ同様であり、触媒層温度も反応器と同等の

409°C であった。この結果から、気相反応による発

熱ではなく、Na2WO4/SiO2 触媒表面で進行する発熱

反応が触媒層温度の上昇に寄与していることが明

らかとなった。 

Na2WO4/SiO2 触媒表面で進行する発熱反応として

は、 1）メタンの活性化、 2）メチルラジカルのカ

ップリング、 3）生成物の逐次酸化の 3つが考えら

れる。そこで、触媒量および圧力について対照実験

を行い、生成物分布や触媒層温度の変化から触媒反

応の検討を行った。 

触媒量を 0−2.0 g で変化させた場合の生成物分布

を Fig. 4aに示す。触媒量が少ない場合 0.10–0.25 g）

には、触媒ブランク条件に近い生成物分布が得られ

た。これは、触媒層よりも気相の体積が大きく、メ

タン酸化が主に気相で進行するためと考えられる

 Fig. 4b）。触媒量が適量の場合 0.50–1.0 g）には、

OCMが効率的に進行し、C2,3Hx選択率が大きく増加

した。触媒量が過剰で気相部分の体積がほとんどな

い場合 2.0 g）には、メタン酸化自体が進行しなか 

った。以上の結果から、Na2WO4/SiO2 触媒はメタン

の活性化にほとんど寄与しておらず、メタンからメ

チルラジカルの生成は主に気相で進行しているこ

とが示唆された。したがって触媒表面では、別の発

熱反応が進行していると考えられる。 

次に、圧力を 8.0 MPaから 2.0 MPaまで段階的に

減少させた場合の生成物分布および触媒層温度の

変化を Fig. 5に示す。Fig. 3bの示した手順の通り、

反応の開始には 8.0 MPaが必要である。しかし、一

度ラジカル反応が開始されると、減圧後も酸素転化

率は 99%以上を維持し、反応は継続した。6.0、4.0 

MPa と減圧するにつれて、C2,3Hx選択率は向上し、

同時に触媒層温度も上昇した。さらに、圧力が 2.0 

MPaまで低下すると、反応は停止した。これらの結

果から、メチルラジカルのカップリングによるエタ

ン生成が触媒表面で進行する発熱反応であること

が示唆された。圧力の低下により、メチルラジカル

と酸素からメチルペルオキシラジカル CH3COO•）

が生成する反応速度が低下し、その結果、メチルラ

ジカル同士のカップリングが触媒表面で進行した

と考えられる。 

 

 

Fig. 4 (a) 高圧メタン酸化における触媒量効果. 反応

条件：Na2WO4/SiO2 catalyst, CH4:O2 = 10:1 (550 mL 

min−1), 6.0 MPa, 410°C. [a]420°C, 8.0 MPa. (b) 各触媒

量における反応管内の模式図. 

 

 

Fig. 5 高圧メタン酸化における圧力効果. 反応条

件：Na2WO4/SiO2 (0.5 g), CH4:O2 = 10:1 (550 mL min−1), 

410°C (Reactor temperature). 
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常圧 OCM系において、Na2WO4/SiO2触媒は 750–

900°C の高温条件下ではメタンをメチルラジカルへ

と効率的に転換する一方で 3)、570°C 以下の低温条

件ではメチルラジカルのカップリングを促進する

ことが報告されている 4)。本反応系における反応温

度は 410°C（ 触媒層温度は 550°C程度）であるため、

Na2WO4/SiO2 触媒がメチルラジカルのカップリング

を促進することは、これらの報告と矛盾しない。 

以上の結果から、Na2WO4/SiO2 触媒は、 1）触媒

表面でのメチルラジカルのカップリングによるエ

タン生成の促進、 2）発熱による反応相温度上昇を

通じた気相 OCM の誘発という 2 つの役割を担うと

考えられる。 

 

3.3. タングステン系酸化物触媒の比較 

 さまざまな SiO2 担持タングステン系酸化物触媒

を用いて、高圧条件下でメタン酸化を行った Fig. 6）。

WO3/SiO2、K2WO4/SiO2、Li2WO4/SiO2では、生成物

の選択性は触媒ブランク条件とほとんど同様であ

った。反応後の各触媒のラマンスペクトルを測定し

たところ、WO3/SiO2, K2WO4/SiO2, Li2WO4/SiO2では、

それぞれ WO3, K2WO4, LiWO4 に由来するピークに

加えて、不定形炭素に由来する DバンドおよびＧバ

ンドのピークが観察された Fig. 7）。これらの触媒

では、炭素析出によって触媒表面が被覆され、活性

を失ったと考えられる。 

 

 
Fig. 6 SiO2担持タングステン系触媒を用いた高圧メ

タン酸化. 反応条件：catalyst (0.5 g), CH4:O2 = 10:1 

(550 mL min−1), 6.0 MPa, 410°C. 

 

Mn–Na2WO4/SiO2は、常圧条件下ではNa2WO4/SiO2

よりも優れた OCM 活性を示すことが報告されてい

るが、本反応系では OCM活性を示さなかった（ Fig. 

6）。反応後のラマンスペクトルでは、不定形炭素に

由来するピークは観察されなかった一方で、MnWO4

に由来するピークが観測された Fig. 7）。高圧メタ

ンによって Mn が III 価から II 価への還元が促進さ

れるため、Mn2O3と Na2WO4から MnWO4が生成し

たと考えられる。このような固相反応は常圧 OCM

系では起こらないため 7)、高圧メタンの高い還元力

によるものと考えられる。したがって、高圧 OCMを

促進する活性種は Na2WO4であり、高圧メタン雰囲

気における還元や炭素析出に対する安定性が本反

応系において、触媒に求められる重要な要素である

ことが示唆された。 

 

 
Fig. 7 反応後触媒のラマンスペクトル. 

 

4. 結言 

本研究では、Na2WO4/SiO2 触媒を用いて高圧条件

でメタン酸化を行い、410°Cという低温において C2

および C3 炭化水素化合物を効率的に生成できるこ

とを見出した。コントロール実験の結果から、

Na2WO4/SiO2の機能は、 １）触媒表面でのメチルラ

ジカルのカップリングによるエタン生成の促進、

 ２）発熱反応による触媒層温度の上昇を通じた気

相 OCM の促進、の 2 つであることが示唆された。

また高圧メタン雰囲気におけるNa2WO4/SiO2の高い

安定性が本反応に不可欠であった。 

従来の常圧 OCM では、触媒表面でメタンを活性

化し、気相でメチルラジカルがカップリングする反

応機構が提案されてきた。一方、本反応系では気相

でメタンを効率的に活性化しつつ、生成物選択性を

触媒によって制御するという独自のアプローチを

行った。触媒設計と反応場制御を融合した戦略によ

って、メタン–メタノール酸化など高難度反応への

さらなる展開が期待される。 
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