カラムクロマトグラフィーによる高量子収率グラフェン量子ドット の均一性の向上

Improved Homogeneity of High-Quantum-Yield Graphene Quantum Dots Separated via Column Chromatography

東邦大院理 ¹, 産総研 ², ^O(M2)石井 夏野 ¹, 細貝 拓也 ², 菅井 俊樹 ¹, 桒原 彰太 ¹
Toho Univ. ¹, AIST ², ^ONatsuno Ishii ¹, Takuya Hosokai ², Toshiki Sugai ¹, Shota Kuwahara ¹
E-mail: 6123002i@st.toho-u.ac.jp

グラフェン量子ドット(GQD)は、毒性が低く、量子サイズ効果など特異な光学特性を有しているため、光学デバイスやバイオイメージングなどへの応用が期待されている。現在、GQD は様々な合成法により生成されているが、GQD の量子収率(QY)は低く、また多分散性や不均一な表面状態により GQD の発光の単色性が低いため、実用化が制限されている。一方、城らはベンジルアルコールでエステル化した有機溶解性の GQD(GQD-Bn)を合成し、25%の QY を得たと報告し「」、さらに、Wu らはサイズ排除クロマトグラフィー(SEC)によって GQD のサイズを、Zhu らはシリカゲルカラムクロマトグラフィー(SGCC)によって GQD の表面状態を制御した「2,3]。本研究では、GQD の実用化に向けて QY の向上及びサイズと表面状態の制御

を目的とし、GQD-Bn を SGCC 及び SEC によって分離精製した。

既報のとおり GQD-Bn を合成した[1]。合成した GQD-Bn をヘキサン/酢酸エチル(10:1 v/v)、酢酸エチル、メタノールを展開溶媒として用いた SGCC により極性分離し、3 個のフラクション(GQD-Bn-L、-M、-H)を得た。さらに、トルエンに分散させた GQD-Bn-L をバイオビーズ S-X1 を用いた SEC によりサイズ分離し、14 個のフラクションを得た。

表 1 に極性分離した GQD-Bn の最大励起波長 $\lambda_{\text{ex,max}}$ 、最大蛍光波長 $\lambda_{\text{em,max}}$ 、QY をまとめた。GQD-Bn-L のみ分離前より QY が 4.3 %向上した。また、図 1 に サイズ分離した GQD-Bn-L の各フラクションの最大蛍光 波長及び QY を示す。フラクションが進むにつれて量子 サイズ効果により $\lambda_{\text{em,max}}$ がブルーシフトし、フラクション 6 では未分離の GQD-Bn よりも 21.9 %、GQD-Bn-L よりも 17.6 %も QY が向上した。

- [1] S. Tachi, et al., Sci. Rep., 9, 14115, 2019.
- [2] S. Zhu, et al., RSC Adv., 2, 2717, 2012.
- [3] W. Wu, et al., RSC Adv., 2, 18898, 2019.

Table 1. Fluorescence properties of GQD-Bn separated based on polarity

Sample	λ _{ex,max}	λ _{em,max}	QY
	/ nm	/ nm	/%
Nonseparated	380	433	32.0
GQD-Bn-L	380	415	36.3
GQD-Bn-M	380	433	27.5
GQD-Bn-H	380	430	8.4

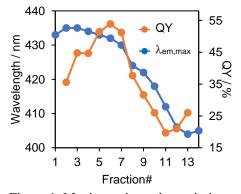


Figure 1. Maximum intensity emission wavelength and QY of GQD-Bn-L separated based on particle-diameter