その場 XAFS 測定による Al₂O₃ 担体上の Fe 触媒からの 単層カーボンナノチューブ生成過程の解明

Elucidation of growth process of single-walled carbon nanotubes from Fe catalysts on alumina support layer by *in situ* XAFS measurement

名城大理工¹, 名城大ナノマテ研² [○]堀内 順平¹, 水野 慎也¹, 才田 隆広^{1,2}, 成塚 重弥¹, 丸山 隆浩^{1,2}

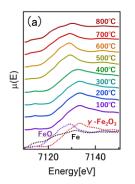
Meijo Univ.¹, Meijo Nanomaterial Res. Center²

OJumpei Horiuchi¹, Shinya Mizuno ¹, Takahiro Saida^{1,2}, Shigeya Naritsuka¹,

Takahiro Maruyama^{1,2}

E-mail: takamaru@meijo-u.ac.jp

はじめに


単層カーボンナノチューブ(SWCNT)は、エレクトロニクス分野への応用が期待されている物質である。しかし、その成長メカニズムは未解明な点が多く、応用が困難となっている。成長メカニズムの解明には、SWCNT 生成中の触媒状態を観察するその場測定が必須となる。このため我々は、対象元素やその近接元素の解析が可能な X 線吸収微細構造(XAFS)測定に注目した。過去の研究では、X 線を透過する BN 担体を用いたその場 XAFS 測定を行ってきた[1]。本研究では、より一般的な CNT 成長条件に近づけるために Al_2O_3 を担体として用い、その場 XAFS 測定による SWCNT 成長中の Fe 触媒の化学状態の分析によって、SWCNT 生成過程の解明を目指した。

実験方法

硝酸鉄九水和物とアルミナスラリー、純水を混合・焼成したものを粉砕・加圧してペレットを作製し、これを XAFS 測定用の試料とした。本試料を XAFS 測定用ビームラインに設置された CVD 装置内に取り付け、キャリアガス Ar/H_2 を 1000 sccm 導入して 800° Cまで昇温を行った。昇温後、 C_2H_5OH ガスを 100 sccm 導入して 10 分間 CNT 成長を行った。昇温・成長中に 1 分毎 に 10 子の 10 子の

結果と考察

ラマン分光測定、SEM および TEM 観察から、XAFS 測定後の試料全体から SWCNT の成長が確認でき、担体を BN から Al_2O_3 に変えたことによって SWCNT 生成量を増加させることに成功した。図 1(a)、(b)に昇温中の XANES スペクトル、及び CNT 成長中の XAFS スペクトルの EXAFS 領域から得られた RSF を示す。昇温開始直後の Fe 触媒は γ -Fe₂O₃ に近い状態であるが、昇温とともに還元が進行し、 600° Cで FeO に、成長温度である 800° C付近では部分的に金属 Fe への還元がみられた。また、図 1(b)から、Fe 触媒は成長開始後に部分的に炭化物を形成することがわかった。

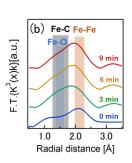


図 1 (a) 昇温時の XANES スペクトルと (b) CNT 成長中の RSF

謝辞

本研究の一部は、科研費基盤研究(B) 19H02563、名城大学ナノマテリアル研究センター、 および文科省マテリアル先端リサーチインフラ事業 (分子科学研究所) の支援を受けて行なった。

参考文献

[1] 柄澤他, 2021 年応用物理学会秋季学術講演会 23p-P13-2.