一般セッション(口頭講演) | 8 プラズマエレクトロニクス:8.6 Plasma Electronics English Session **蕾** 2024年9月18日(水) 18:45~19:00 **爺** A32 (朱鷺メッセ3F) ## [18p-A32-20~20] 8.6 Plasma Electronics English Session 呉 準席(阪公大) ## ▶ 英語発表 18:45 ~ 19:00 [18p-A32-20] Investigation of Metal-Organic Plasma Enhanced Chemical Vapor Deposition for Yttrium Oxide film using a Microwave Excited Atmospheric Pressure Plasma Jet O(DC)Bat-Orgil Erdenezaya¹, Hirochika Uratani¹, Ruka Yazawa¹, Md. Shahiduzzaman¹, Tetsuya Taima¹, Yusuke Nakano¹, Yasunori Tanaka¹, Tatsuo Ishijima¹ (1.Kanazawa University) ## Investigation of Metal-Organic Plasma Enhanced Chemical Vapor Deposition for Yttrium Oxide film using a Microwave Excited Atmospheric Pressure Plasma Jet Kanazawa University, °Bat-Orgil Erdenezaya, Hirochika Uratani, Ruka Yazawa, Md. Shahiduzzaman, Tetsuya Taima, Yusuke Nakano, Yasunori Tanaka, Tatsuo Ishijima E-mail: bat-orgil@stu.kanazawa-u.ac.jp, ishijima@ec.t.kanazawa-u.ac.jp Introduction: Yttrium Oxide (Y₂O₃) is an attractive insulator material that has higher corrosive resistance than conventional ceramics of alumina (Al₂O₃), silicon carbide (SiC), and silicon nitride (Si₃N₄). This makes Y₂O₃ a preferred choice for protective coatings against corrosive plasma in the etching chamber. Various methods have been developed for Y₂O₃ film, including thermal spray, sputtering, and atomic layer deposition. However, cost-related issues such as operation and maintenance of equipment, still remain. A microwave atmospheric pressure plasma jet (MW-APPJ) generates high-density reactive species at low-temperatures and operates without requiring costly vacuum equipment. Therefore, in the present study, we deposited Y_2O_3 film through the MW-APPJ, employing a relative cost-effective yttrium acetate with an innovative organic additive solution in a metal-organic chemical vapor deposition (MOCVD) system. - 2. Experimental: Figure 1 illustrates the MW-APPJ with a bubbling system. The MW-APPJ consisted of a cylindrical metal container that has a single gas inlet port. A rectangular waveform at 10 kHz was used to modulate the 2.45 GHz microwave amplitude as an input. The peak power was 230 W with an on-time duty factor of 30%. The average input power (P_{avg}) was 70 W. Argon used both working gas (Q_w) and carrier gas (Q_c) . Organic Y₂O₃ precursor solution in a tank was introduced into to plasma reactor via a gas inlet port by a Q_c . A quartz glass substrate of 1 mm thick was placed on a stage. The substrates are heated up to 100° C (T_s) by a hot plate. The distance between substrate surface and the MW-APPJ nozzle was 5.5 mm. Duration of the deposition was 20 min. Conventional x-ray diffraction (XRD) and grazing incidence x-ray diffraction (GI-XRD) were used to examine the crystallinity of the deposited films. - 3. Results and discussions: Figure 2 shows the XRD and GI-XRD spectra of the Y_2O_3 films deposited on quartz substrates under different carrier gas flow rates. There were no obvious peaks appearing in the XRD spectra of all samples in Fig. 2 (a). However, in the GI-XRD spectra, the Y_2O_3 films fabricated under carrier gas flow rate of 139 sccm showed dominant peaks corresponding to a (332) reflection at around 45.3°. as shown in Fig. 2 (b). Additionally, there is a presence of (444) Y_2O_3 reflection at around 66.9°. Interestingly, the difference from previous studies [1,2] that reported Y₂O₃ films prepared by MOCVD were normally amorphous when growth temperature was lower than 400°C. To further enhance the film quality of deposited Y₂O₃ film, several experimental parameters such as gas flow rates, microwave power, and substrate temperatures are investigated systematically. Figure 1. MW-APPJ with a bubbling system. Figure 2. (a) XRD and (b) GI-XRD diffraction pattern of deposited Y_2O_3 films different carrier gas (Q_c) flow rate: sample A (grey) 70 sccm, sample b (red) 139 sccm, and blank quartz substrate (blue). ## References: - [1] S. Karle, et al., Chem. Vap. Deposition 335 (2015) 21. - [2] D. Niu, et al., J. Electrochem. Soc. **F102** (2003) 150.