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This study presents a variational formulation of crack phase-field modeling for ductile fracture. Constitutive
work density consists of elastic, plastic, and crack components, with damage variables separately introduced
for elasticity and plasticity. The proposed model is equipped with thresholds and coefficients to control the
amount of damage driving force, while variational consistent evolution laws for damage are derived as stationary
conditions from a supremum problem of dissipative potential. Also, governing equations are derived from an
optimization problem within the continuum thermodynamics framework. The characteristic features of the
proposed model are demonstrated with numerical examples.

1. Introduction
Crack phase-field model1) (PF model) has received attention

due to its capability to predict arbitrary crack propagation and its
compatibility with classical fracture mechanics. This study presents
a variational formulation for ductile fracture equipped with two
damage variables for elasticity and plasticity. The proposed model
is equipped with thresholds and coefficients to control the amount
of damage driving force, while damage evolution laws follow a
variational structure.
2. Proposed model
2.1. Constitutive work density functional

In line with our previous study2) , we define the following consti-
tutive work density functional:

Ψ = Ψe +Ψp +Ψf , (1)

where Ψe, Ψp, and Ψf denote the elastic and plastic strain energy
densities and the energy density due to crack surface generation,
respectively. The elastic part follows a tensile-compressive split as

Ψe = 𝑔
(
𝑑e) Ψe+

0 +Ψe−
0 , (2)

where Ψe+
0 and Ψe−

0 denote the effective tensile and compressive
amounts of Ψe. Note that the reduction of material stiffness is
considered by the degradation function 𝑔 (𝑑e), which is determined
by the elastic damage variable 𝑑e. Similarly, the plastic part is
defined as

Ψp = 𝑔
(
𝑑p) Ψp

0, (3)

where Ψp
0 denotes the effective amount of Ψp. Also, another degra-

dation function, which is determined by the plastic damage variable
𝑑p, is introduced. Here, 𝑑p does not directly contribute to the
deterioration of material but affects the evolution of plastic harden-
ing variable. In addition, the energy density due to crack surface
generation is defined as

Ψf :=
∫ 𝑡

0
𝐺c

(
𝑭e, 𝛼

)
¤𝛾𝑙f 𝑑𝑡, (4)

where 𝐺c (𝑭e, 𝛼) and 𝛾𝑙f denote the degrading fracture toughness
and the crack surface density. Note that 𝐺c is degraded by the
accumulation of plastic strain and the increase of mean stress, which
reflects the effect of stress triaxiality. Also, since 𝐺c has a process-
dependent property, we have definedΨf as a time-dependent format.

2.2. Evolution laws for plasticity and damage
The energy dissipation of the proposed model is given as

Dpf = 𝝉 : 𝒅p − 𝑟p ¤̄𝛼 + 𝜏fe ¤𝑑e + 𝜏fp ¤𝑑p − 𝑟f ¤𝑑, (5)

where 𝝉, 𝑟p, 𝜏fe, 𝜏fp and 𝑟f are the driving force of plasticity, plastic
dissipative resistance force, elastic driving force and plastic driving
forces, and damage dissipative resistance force. Then, let us define
the following supremum problem of the dissipative potential density
based on the maximum dissipation principle:

Vpf = sup
[𝝉dev ,𝑟p ,𝜏fe ,𝜏fp ,𝑟 f]

sup
[𝜆p ,𝜆f]

Dpf − 𝜆pΦp − 𝜆fΦf︸                    ︷︷                    ︸
Ṽpf

,
(6)

where we have introduced two threshold functions to prescribe the
admissible stress fields with respect to plasticity and damage. Their
specific forms are as follows:

Φp :=
| |𝝉dev | |
𝑔 (𝑑e) −

√
2
3

𝑟p

𝑔 (𝑑p)
Φf := 𝜏fe* + 𝜏fp* − 𝑟f

with 𝜏fe* = −𝜕𝑑e𝑔
(
𝑑e) 〈Ψe+

0 −Ψe
cr〉𝜁e

𝜏fp* = −𝜕𝑑p𝑔
(
𝑑p) 〈Ψp

0 −Ψp
cr〉𝜁p.

(7)

where 𝜏fe* and 𝜏fp* are the “modified” elastic and plastic driving
forces along with the conditions 𝜏fe* ≤ 𝜏fe and 𝜏fp* ≤ 𝜏fp. Also,
two threshold parameters Ψe

cr and Ψp
cr and coefficients 𝜁e ∈ [0, 1]

and 𝜁p ∈ [0, 1] have been introduced to control the contributions of
elastic and plastic strain energies for damage evolution. We impose
the stationary conditions of Eq. (6) with respect to the involved
primary variables to derive the five evolution laws accompanied by
the following corresponding loading/unloading conditions:

𝒅p =
𝜆p

𝑔 (𝑑e)
𝝉dev

| |𝝉dev | |
¤̄𝛼 =

√
2
3

𝜆p

𝑔 (𝑑p)
¤𝑑e = 𝜆f𝜁e𝜒e

¤𝑑p = 𝜆f𝜁p𝜒p

¤𝑑 = 𝜆f

,


𝜆p ≥ 0, Φp ≤ 0, 𝜆pΦp = 0

𝜆f ≥ 0, Φf ≤ 0, 𝜆fΦf = 0
, (8)

in which 𝜒e and 𝜒p are step functions defined as

𝜒e =

{
1 if Ψe+

0 −Ψe
cr > 0

0 otherwise
, 𝜒p =

{
1 if Ψp

0 −Ψp
cr > 0

0 otherwise
. (9)
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2.3. Global governing equations
The stationary conditions of the total rate potential, which is

defined by Ψ, Vpf, and external forces, yield the following global
governing equations:
• Equilibrium for mechanical field:

𝜕

𝜕𝑿
· 𝑷 + 𝑩 = 0, Neumann cond. 𝑷 · 𝑵 = 𝑻, (10)

• Equilibrium for micromorphic plastic field:
𝜕Ψp

𝜕𝛼
− 𝑑

𝑑𝑿
· 𝜕Ψ

p

𝜕∇𝛼 = 0, Neumann cond. ∇𝛼 · 𝑵 = 0, (11)

• Equilibrium for phase-field:

𝑟f =
𝜕Ψf

𝜕𝑑
− 𝑑

𝑑𝑿
· 𝜕Ψ

f

𝜕∇𝑑 , Neumann cond. ∇𝑑 · 𝑵 = 0, (12)

• Plastic force / Hardening force:

𝝉 = 2
𝜕Ψe

𝜕𝒃e · 𝒃e, 𝑟p =
𝜕Ψp

𝜕𝛼̄
, (13)

• Elastic / Plastic damage driving force:

𝜏fe = − 𝜕Ψe

𝜕𝑑e , 𝜏fp = − 𝜕Ψp

𝜕𝑑p , (14)

3. Numerical example
This numerical example is devoted to the demonstration of the

crack representation performance using the proposed model. Ten-
sile failures for the two-dimensional symmetrically notched spec-
imen are considered, as shown in Fig. 1. The Swift hardening
function 𝑦̂ (𝛼̄) = 𝑦a (𝛼̄ + 𝛼b)𝛽c is used for the hardening behavior
of plastic deformation. The material properties and other parame-
ters for damage computation are provided in Table 1.
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Fig. 1 Geometry and boundary conditions for the specimen.

Table 1 Material parameters for the specimen.
Parameter Value Unit
Young’s modulus 𝐸 200000 [MPa]
Poisson’s ratio 𝜈 0.3 [-]
Strength coefficient 𝑦a 1169 [MPa]
Pre-strain parameter 𝛼b 0.0033 [-]
Hardening parameter 𝛽c 0.1 [-]
Plastic length scale parameter 𝑙p 0.2 [mm]
Penalty parameter 𝑝p 2500 [MPa]
Initial fracture toughness 𝐺c0 1000 [N/mm]
Critical fracture toughness 𝐺c∞ 10 [N/mm]
Degradation threshold 𝛼cr 0 [-]
Crack length scale parameter 𝑙f 0.2 [mm]
Elastic damage coefficient 𝜁 e 1.0 [-]
Elastic damage threshold Ψe

cr 0 [MPa]

Seven cases with different combinations of parameters relating
to damage evolution are investigated. Because of space limitaion,
we show the load-displacement curves for the cases IV, V, VI, and
VII only in Fig. 2 and the damage distributions for the cases IV and
VI Fig. 3, respectively. As shown in Fig. 2, cases IV and V exhibit
stress drop after relatively large deformation, while cases VI and VII
show relatively small deformation. Specifically, a slanted crack path
is obtained in case IV. This is due to the fact that the crack initiates
along with the shear band. Meanwhile, the almost horizontal crack
pattern is obtained for case VI. That is, the crack initiates from both

notch surfaces towards the center of the specimen. This is because
the accumulation of plastic strain is concentrated on the notch tips in
the early plastic deformation state. Note that similar crack patterns
are seen in previous studies3,4) , and the proposed model is thus
unified in nature and is able to mimic the existing PF models by
adjusting the parameters related to damage.
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Fig. 2 Load-displacement curves for the specimen.
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cr = 200, 𝛽G1 = 5

(P) u = 0.808 mm (Q) u = 0.912 mm (R) u = 0.930 mm

(b) Case VI: 𝜁 p = 1.0, Ψp
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Fig. 3 Crack evolutions for the specimen.

4. Conclusion
The crack phase-field model is known for its ability to predict

the initiation of an arbitrary crack, its propagation, and bifurcation
while remaining compatible with classical fracture mechanics. In
this study, a variational formulation is carried out to derive evolution
laws separately for plasticity and damage as the stationary condi-
tions of the supremum problem of the dissipative potential. As a
result, the proposed model involves two damage variables associ-
ated with the elastic and plastic driving forces in damage evolution.
The characteristic features of the proposed model are demonstrated
by presenting numerical examples.
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