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This study presents a variational formulation of crack phase-field modeling for ductile fracture. Constitutive
work density consists of elastic, plastic, and crack components, with damage variables separately introduced
for elasticity and plasticity. The proposed model is equipped with thresholds and coefficients to control the
amount of damage driving force, while variational consistent evolution laws for damage are derived as stationary
conditions from a supremum problem of dissipative potential. Also, governing equations are derived from an
optimization problem within the continuum thermodynamics framework. The characteristic features of the
proposed model are demonstrated with numerical examples.

1. Introduction 2.2. Evolution laws for plasticity and damage
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Crack phase-field model! (PF model) has received attention
due to its capability to predict arbitrary crack propagation and its
compatibility with classical fracture mechanics. This study presents
a variational formulation for ductile fracture equipped with two
damage variables for elasticity and plasticity. The proposed model
is equipped with thresholds and coefficients to control the amount
of damage driving force, while damage evolution laws follow a
variational structure.

2. Proposed model
2.1. Constitutive work density functional

In line with our previous studyz), we define the following consti-
tutive work density functional:

[N TR R (1)

where W€, WP, and W! denote the elastic and plastic strain energy
densities and the energy density due to crack surface generation,
respectively. The elastic part follows a tensile-compressive split as

W = g (d°) WS+ )

where ‘P8+ and ‘I’g_ denote the effective tensile and compressive
amounts of Y¢. Note that the reduction of material stiffness is
considered by the degradation function g (d€), which is determined
by the elastic damage variable d®. Similarly, the plastic part is
defined as

WP = g (dP) W5, 3)

where ‘I’g denotes the effective amount of WP. Also, another degra-
dation function, which is determined by the plastic damage variable
dP, is introduced. Here, dP does not directly contribute to the
deterioration of material but affects the evolution of plastic harden-
ing variable. In addition, the energy density due to crack surface

generation is defined as
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where G (F¢, @) and y;; denote the degrading fracture toughness
and the crack surface density. Note that G is degraded by the
accumulation of plastic strain and the increase of mean stress, which
reflects the effect of stress triaxiality. Also, since G has a process-
dependent property, we have defined ¥lasa time-dependent format.

The energy dissipation of the proposed model is given as
pf _ . gp_ P53 fe je fpjp _ f

DVl =1:d° —rPa+7°d" +1PdP - r'd, ®)
where 7, 7P, 7%, 7P and rf are the driving force of plasticity, plastic
dissipative resistance force, elastic driving force and plastic driving
forces, and damage dissipative resistance force. Then, let us define
the following supremum problem of the dissipative potential density
based on the maximum dissipation principle:

sup sup OPf — PP — 2f@f,
[Taev,r e ot [P A (6)
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where we have introduced two threshold functions to prescribe the
admissible stress fields with respect to plasticity and damage. Their
specific forms are as follows:
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with 7 = 9 (d°) (WS - WE)L°
" = —pg (dP) (¥ — PP )P

where 77" and " are the “modified” elastic and plastic driving

forces along with the conditions 7" < 7% and P < 7P, Also,
two threshold parameters WS, and W5, and coefficients £ € [0, 1]
and ¢P € [0, 1] have been introduced to control the contributions of
elastic and plastic strain energies for damage evolution. We impose
the stationary conditions of Eq. (6) with respect to the involved
primary variables to derive the five evolution laws accompanied by
the following corresponding loading/unloading conditions:
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in which y© and yP are step functions defined as
e 1 if‘Pg’f—‘I’gr>0’ p_ 1 if‘Pg—‘I’Er>0.(9)
0 otherwise 0 otherwise
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2.3. Global governing equations

The stationary conditions of the total rate potential, which is
defined by ¥, VP, and external forces, yield the following global
governing equations:
e Equilibrium for mechanical field:

;X P+B =0, Neumanncond.P-N=T, (10)
o Equilibrium for micromorphic plastic field:
oYP  d  9YP
e .Va-N= 11
5o~ IX 3V 0, Neumann cond. Va-N =0, (11
e Equilibrium for phase-field:
ot a4 0wt
f_ - . .N = (12)
“d ~dx avad’ Neumann cond. Vd - N =0,
o Plastic force / Hardening force:
owe owP
= 2 . be P = — 13
T 7 T T 8a )
o Elastic / Plastic damage driving force:
0w owP
fe_ _Z2° fp_ 27 14
T VTR T a0 (14)

3. Numerical example
This numerical example is devoted to the demonstration of the

crack representation performance using the proposed model. Ten-
sile failures for the two-dimensional symmetrically notched spec-
imen are considered, as shown in Fig. 1. The Swift hardening
function § (&) = ya (@ + ap,)5¢ is used for the hardening behavior
of plastic deformation. The material properties and other parame-
ters for damage computation are provided in Table 1.
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Fig. 1 Geometry and boundary conditions for the specimen.

Table 1 Material parameters for the specimen.

Parameter Value Unit
Young’s modulus E 200000  [MPa]
Poisson’s ratio v 0.3 [-]
Strength coefficient Ya 1169 [MPa]
Pre-strain parameter ay 0.0033 [-]
Hardening parameter Be 0.1 [-]
Plastic length scale parameter lp 0.2 [mm]
Penalty parameter Pp 2500 [MPa]
Initial fracture toughness G 1000 [N/mm]
Critical fracture toughness Geoo 10 [N/mm]
Degradation threshold Qer 0 [-]
Crack length scale parameter Il 0.2 [mm]
Elastic damage coeflicient I 1.0 [-]
Elastic damage threshold We, 0 [MPa]

Seven cases with different combinations of parameters relating
to damage evolution are investigated. Because of space limitaion,
we show the load-displacement curves for the cases IV, V, VI, and
VII only in Fig. 2 and the damage distributions for the cases IV and
VI Fig. 3, respectively. As shown in Fig. 2, cases IV and V exhibit
stress drop after relatively large deformation, while cases VI and VII
show relatively small deformation. Specifically, a slanted crack path
is obtained in case IV. This is due to the fact that the crack initiates
along with the shear band. Meanwhile, the almost horizontal crack
pattern is obtained for case VI. That is, the crack initiates from both
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notch surfaces towards the center of the specimen. This is because
the accumulation of plastic strain is concentrated on the notch tips in
the early plastic deformation state. Note that similar crack patterns
are seen in previous studies®¥, and the proposed model is thus
unified in nature and is able to mimic the existing PF models by
adjusting the parameters related to damage.
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Fig. 2 Load-displacement curves for the specimen.
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Fig. 3 Crack evolutions for the specimen.

4. Conclusion

The crack phase-field model is known for its ability to predict
the initiation of an arbitrary crack, its propagation, and bifurcation
while remaining compatible with classical fracture mechanics. In
this study, a variational formulation is carried out to derive evolution
laws separately for plasticity and damage as the stationary condi-
tions of the supremum problem of the dissipative potential. As a
result, the proposed model involves two damage variables associ-
ated with the elastic and plastic driving forces in damage evolution.
The characteristic features of the proposed model are demonstrated
by presenting numerical examples.

References
1) Miehe et al. Int. J. Numer. Methods Eng. 83 (10), pp.1273—

1311, 2010.
2) Hanetal. Comput. Mech. 69 (1), pp.151-175, 2022.
3) Ambati et al. Comput. Mech. 55 (2), pp.383-405, 2015.
4) Yin & Kaliske Comput. Methods in Appl. Mech. Eng. 366,

pp.113068, 2020.

- 2B01-06-01 -



