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In this study, we investigate the effectiveness of geodetic data monitored by GNSS (Global Navigation Satellite
System) as the prior learning to observational ocean data for the improved tsunami scenario detection. For the
case study targeting Nankai-trough, 600 earthquake/tsunami scenarios are generated by GeoClaw and fakequake
software. With the synthetically generated geodetic displacements by fakequake software, we examine the
reasonable initial probability setting which is prior to the learning on the ocean wave data.

1. Introduction

Tsunamis are one of the most significant coastal risks in the in-
ternational community. Especially in Japan, which is frequently
threatened by earthquakes and its subsequent tsunami inundation,
considerable attention has been paid to the expected Nankai-Trough
earthquake and tsunami in the next few decades, which will be
an event with extremely short evacuation time (<30 mins) for the
residents. Although there have been many tsunami forecast sys-
tems proposed, there is still room to improve minimizing the un-
certainties relevant to the deterministic numerical simulations or
erroneous/noisy data acquired in real-time.

This study examines the utilization of geodetic data, which can
be obtained immediately after the fault rupture by GNSS (Global
Navigation Satellite System), as the prior learning to in-situ ocean
data along the lines of the previously developed tsunami scenario
detection method"). For that purpose, we set up 600 scenarios
of fault ruptures and subsequent tsunamis, targeting the Nankai
trough. In addition to the tsunami wave history data sampled in
some synthetic ocean gauges, geodetic displacements supposed to
be monitored at 18 GNSS stations are synthetically generated by the
fakequake software¥->) . With the database, we examine the reason-
able initial probability setting for the sequential tsunami scenario
detection methods.

2. Earthquake and tsunami scenario generations

The fakequakes software?-3-% is used to generate 600 synthetic
kinematic slip distributions for Nankai-trough-going ruptures along
with the corresponding seafloor deformations. Fig. 1(a) shows one
of the slip distribution generated under Mw 8.3 situations. Fig. 1(b)
and (c) shows the snapshot of the fault rupture, which are calculated
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from Okada model®). We choose 18 locations that are identical to
that of GEONET®, as shown in Fig. 2(a). The nearest stations
to KOCHI city, where are threatened by the huge tsunami risk
triggered by Nankai mega-thrust, are also provided in Fig. 2(b). In
those points, geodetic motions in every 3 directions, North-South,
East-West, and vertical are synthetically generated at 1.0 Hz with
1024 seconds data duration based on Green functional methods.

The subsequent tsunami propagation and inundation are realized
by GeoClaw”), as shown in Fig. 2(c) and (d). The 4 hours wave
history data are sampled at 5 seconds for POD and Bayesian update
scheme. Fig. 2(d) shows the wavefoam data calculated at the
black dots described in Fig. 2(c). We can understand that the first
waves do not reach those offshore gauge locations when the GNSS
sampling durations are indicated by the blue region in graphs at
Fig. 2(d). From that, we can expect that GNSS data can provide
rich information for scenario detection before the offshore wave
observations.

3. Geodedic data as the prior information for offshore
observations

According to the previous method!), we detect the most probable
tsunami scenario from Ny pre-computed tsunami scenarios based
on the following Bayesian theorem:
P(e™ | E))
Ns
2.0 P(eW | E)P(E))

PE; D)= PE;j 17Dy (1)

Here, Ej represents the event that the tsunami equivalent to the
Jj-th scenario occurs. Also, £(") means the events that we ob-
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Fig. 1 Example of the synthetic fault rupture generated by fakequake and Okada model
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tain some kinds of information related to the occurring tsunami.
Since P(A | B) means the conditional probability of A given B,
P(E; | &) means the probability of j-th pre-computed tsunami
scenario would be the occuring events. Here, the recent ocean ob-
servational network, such as DONET, would realize £ to be the
sequentially updated information per dozens of seconds. The con-
ditional probability P(E; | £(®) can be updated by the following
formulation:

At the first step of the Bayesian update, we can impose the
uniform probability 1/Ng on each tsunami scenario according to
the principle of insufficient reason. However, this prior probability
can be determined more reasonably if we can rely on geodetic
information measured immediately after the fault ruptures. In fact,
the geodetic data reduct the high sensitivity of the offshore gauges
located along the main tsunami propagating path in the process of
machine learning done by Makinoshima et al.%) |

For that purpose, we attempt to improve our previous tsunami
scenario detection method by setting the prior probability at the first
step of (1), P(Ej | 8(0)), as some function of the geodetic data.
Our POD type learning method is also applicable to the full-time
series of geodesic motion. But also the representative information
extracted by those histories, such as the maximum displacement
or the total displacement at the final step, will be sufficient for the
learning.

4. Conclusion

In this study, we attempt to set the prior probabilty at the in-
tial step of Bayesian update as some function related to the syn-
thetic geodedic data generated by fakequake (MudPy) software.
The predicition accuracies will be discussed with the quantative
indecese such like the maximum wave heights in the presentations.
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Fig. 2 Synthetic GNSS data : (a) Locations of geodetic
generated by fakequake(MudPy) software
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