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The numerical analysis of corrosion characteristics to accurately predict the progress of corrosion has 
received much attention from researchers. In actual construction, steel is often treated with coatings to prevent 
corrosion. In this research, A-type and C-type paint-coating system generally used for steel structural 
members was applied to SS400 steel. Two types and different sizes of defects were artificially created on the 
coating to simulate the corrosion after the coating was damaged. The corrosion tests were carried out under 
the accelerated corrosion test ISO 16539 Method B. The corrosion data of the steel plate surface at different 
stages were used as datasets. A generative adversarial network (GAN) based prediction model was used to 
simulate the corrosion progression at the coating defects. According to the experimental results, the prediction 
model can predict the corrosion at the final stage in the area of coating defects on the steel plate surface. 

 
1. Introduction 

Monitoring and controlling corrosion of steel structures is 
critical to maintaining the integrity and function of these 
structures. Regular inspection and maintenance of steel 
structures can help detect corrosion early so that timely repair 
and preventive measures can be taken. This can help extend the 
life of steel structures, reduce the risk of failure, and save on 
costly repairs or replacements. Therefore, it is important for 
practical maintenance if fast and accurate corrosion prediction 
models are developed. In recent years, deep learning has shown 
great potential in many fields and they have been widely used in 
modeling and prediction tasks. In a previous study, a deep 
learning-based method was proposed to predict the corroded 
surface status of uncoated steel (Jiang, F. and Hirohata, M.1)). 
This method showed good performance for corrosion prediction 
of uncoated steel with uniform corrosion. However, in actual 
steel structures, steel is mostly coated for corrosion protection. 
In general, paint-coated steel is less susceptible to corrosion than 
uncoated steel because the coating provides a barrier between 
the steel and the environment. Nevertheless, paint-coated steel is 
not immune to corrosion, and the coating will be damaged over 
time due to various factors. Therefore, it has more practical 
significance to study corrosion after coating damage. 

In this study, adversarial learning was used to simulate future 
stages of the corroded surface with a data set derived from 
actual paint-coated steel specimens (taken from two actual 
bridges). The accelerated corrosion test ISO 16539 Method B 
was conducted (Jiang, F., et al2)). The model can be used to 
predict the next stage of corrosion based on previous corrosion 
situations. The method proposed in this study can predict 
corrosion progress quickly and accurately, and this prediction 
method can save significant cost and time for corrosion 
assessment of steel structures with paint-coated steel. 

 
2. Specimen and corrosion test 

Two coatings commonly used in steel structures, A-type and 
C-type paint-coatings, were applied to SS400 steel. As shown in 
Fig. 1, these specimens were cut into 150 mm × 70 mm × 9 mm 
steel plates. There were 6 specimens for each type of coating, 
and a total of 12 specimens were used for corrosion test. The 
coated surface of the specimen was machined to introduce initial 
defects (brown area in Fig. 1) to simulate the corrosion of the 
paint-coated steel surface after damage in a real environment. 

Linear defects and circular defects were used to increase the 
complexity of the coating defects. The width of linear defects 
was 1 mm, 2 mm, and 3 mm, and the diameter of circular 
defects was 3 mm, 6 mm, and 9 mm. Each specimen has 3 
different size coating defects on the surface. Therefore, a total of 
36 corrosion samples. The back and sides of the specimens were 
protected with anti-corrosion tape, and the uncorroded parts of 
the edges were used as reference surfaces after the corrosion 
tests (black area in Fig. 1). After each stage of the corrosion test, 
a laser focus measurement system was used to measure the 
corrosion depth data of the corroded surface in the measurement 
area (red area in Fig. 1). It has a resolution of 0.2 µm and a 
measurement interval of 0.1 mm. 

ISO 16539 Method B is a recently proposed accelerated 
corrosion test for use on steel structures, using a spray device to 
apply artificial seawater at a concentration of 3.5% to the 
surface. The drying and wetting process was repeated consisting 
of three hours of drying (60°C, 35% RH) and three hours of 
wetting (40°C, 95% RH) with a one-hour transition time from 
dry to wet and from wet to dry, each cycle being 8 hours. This 
was done in 8 cycles (3 days) and 11 cycles (4 days) alternately. 
Under this corrosion test, corroded surface data were measured 
for 0, 1, 3, and 4 months for each specimen. 
 

 
Fig. 1 The size of specimens with different defects and corrosion 

measurement area 
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Fig. 2 Model structure 

 
3. Method  

Gaussian noise and generative adversarial network (GAN) 
were used to enrich the dataset. UNet + ViT were used as the 
generator and Mobilenetv2 was used as the discriminator. UNet 
has two paths. One is a systolic path, which is a traditional stack 
of convolutional and max-pool layers. The other path is the 
symmetric extension path, which allows precise localization 
using transposed convolution. ViT model, which introduces 
transformer structure to computer vision. It has more similarity 
between features obtained from shallow and deep layers. 
Mobilenetv2 is an effective model for feature extraction, object 
detection, and segmentation. It is a mobile architecture based on 
an inverted residual structure that uses deeply separable 
convolution as an effective building block. The generator was 
mainly used to simulate the next stage of regression of the input 
data. The role of the discriminator was to determine whether the 
input data was the data generated by the generator. In addition, 
the discriminator trained in this model could also be used to 
determine the type of coating and defect, and the current stage of 
the corroded surface. In this model, the adam optimizer was 
used as the optimizer. Fig. 2 illustrates the structure and the 
procedure of this corrosion prediction model. 

 
4. Result  

In this research, there were 36 samples of corrosion surface 
data, which were numbered as No.1-No.36. Since there were 
three specimens for each defect of each coating, the linear 
defects of coating A were numbered as No.1-No.9, the linear 
defects of coating B were numbered as No.10-No.18, the 
circular defects of coating A were numbered as No.19-No.27, 
and the circular defects of coating B were numbered as 
No.28-No.36. The corrosion data of No.3, 6, 9, 12, 15, 18, 21, 
24, 27, 30, 33, 36 were used as the test sets and the rest as the 
training sets. Here using the prediction of the corrosion status of 
specimen No.3 and specimen No.21 for 4 months as an example. 
Fig. 3 shows the predicted corroded surface by the model and 
the real corroded surface comparison results. It can be seen that 
they have the same corrosion trend. It indicates that the model 
can predict the corroded surface of the paint-coated steel with 
defects. Table 1 shows the specific results of this prediction 
model. The RMSEs of the test sets all show good prediction 
results. However, comparing the prediction of the corroded 
surface with linear defects and the prediction of the corroded 
surface with circular defects, it can be found that the corrosion 
prediction model predicts the corroded surface with linear 
defects better than that of circular defects. The reason for this 
phenomenon is that the circumference of circular defects is very 
small, which means that the corrosion area where the coating 
damage occurs is actually smaller than that of linear defects. 
Therefore, the model did not learn enough about circular defects. 
The sample of paint-coated steel with circular defects needs to 
be increased in the future work. 

 

 
Fig. 3 Comparison results of specimen No.3 and No.21 for 4 

months. 
 

Table 1 RMSEs of the test sets. 
Linear defects 

No. 3 6 9 12 15 18 
RMSE 0.157 0.464 0.224 0.538 0.123 0.218 

Circular defects 
No. 21 24 27 30 33 36 

RMSE 0.654 1.141 1.893 0.424 1.114 1.123 
 
5. Conclusion 

Paint-coated steel is widely used in steel structures. 
Establishing a reliable corrosion prediction method for 
paint-coated steel is important for the maintenance of actual 
facilities. In this research, the corrosion of defective paint-coated 
steel was investigated to understand the damage that occurs on 
the actual coating. Corrosion tests were conducted on two 
paint-coated steels with different coating defects, and a 
GAN-based model was trained on the corroded surface data 
obtained from the steel plates to develop an effective corrosion 
prediction model. The model can predict the corroded surface of 
the next stage based on the corroded surface of the previous 
stage, and can also determine the coating type and defects, as 
well as the current corrosion stage. According to the 
experimental results, the model proposed in this research can 
predict the corroded surface quickly and accurately. This study 
helps to simplify the determination of the corrosion level of 
paint-coated steel structures and saves time and cost for actual 
maintenance. 
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