
深層学習に物理モデルを結合させた排水機場水位予測手法の構築 
Developing a water level prediction method that combines deep learning with a physical model  

at a drainage pumping station. 
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１ . はじめに 

近年、リアルタイム予測などに導入されるデータ駆動型の深層学習モデルは，正確

かつ大量のデータを利用することで、精度の高い予測モデルとなる。本研究対象であ

る排水機場調整池の水位予測に深層学習モデルを適用させる場合、観測データの異常

値除去に手間がかかり、また長期にわたる大量データの収集も容易ではない。たとえ

正確で大量なデータが準備できたとしても、過去データの中から学習できない未経験

の事象は、予測そのものができない。これを改善するために、物理モデルを導入する。

物理モデルから仮想的に生成される大量の模擬データ（未経験の事象も含む）を準備

し、それを学習することで不十分な観測データを補うことができる。しかし、一般的

に物理モデルは近似解を提供するものなので、観測データのもつパターン（特徴量）

により近づける必要がある。これを可能にするために、あるデータの特徴量を別のデ

ータに転移させる「転移学習」 1）を導入する。本研究の目的は、物理モデルから提供

される模擬データを用いて事前学習した深層学習モデルに転移学習を導入することで、

未経験の事象も含めてより現実的な予測を可能にする手法を構築することである。 

2. 方法 

本研究の予測手法は、常時排水を行う低平農地の排水機場調整池の水位予測を対象

に、図-1 に示す 3 つのステップで構築される。(1) 現地観測された気象データに基づ

き、確率モデルから生成された豪雨時を含

む 1000 個分の模擬降雨（300 mm/72 h）2)

を用いて、内水氾濫解析モデル (物理モデ

ル）を駆動させ、仮想的な気象状況下にお

ける模擬水位データを大量に生成する。こ

の模擬データは、観測水位データの代替デ

ータと見なす。なお、300 mm/72 h は、対

象にした期間最大の降雨量に匹敵する降雨

イベントである。(2) 物理モデルから得ら

れた模擬水位データを用いて、深層学習モ

デルの事前学習を行う。(3) 事前学習され

た深層学習モデルを用いて、模擬水位デー
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図-1 提案する予測手法の概念とデータフロー  

Concept & data flow of our proposed methodology. 
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タの特徴量を観測データに取り込むために転移学習を導入する。その上で、水位予測

を行い、結果の精度検証を実施する。なお、転移学習では、事前学習された深層学習

モデルの内部パラメータを一部分再学習して最適化する。観測データは、約 7 年間半

に測定された水位データで、常時排水時のデータが 98％以上を占めるものを利用する。

300 mm/72 h の降雨量に対応する模擬水位データは、降雨期間の 72 時間に水位波形の

テールを計算するために 2 日間を加えた 120 時間分のシミュレーション結果である。

10 分割交差検証法を用いて予測精度の評価を行い、二乗平均平方根誤差（RMSE）と

Nash-Sutcliffe 係数（NS）で定量評価する。深層学習モデルは、時間予測に有用な長

短期記憶（LSTM3））を採用した。 

3. 予測結果とまとめ  

1000個の洪水イベントを模擬した水位データで事前学習させた LSTMを転移学習に

よって観測データに適用した。再学習回数は、誤差の変化が安定した 50回に設定した。

期間最大の洪水イベントが含まれる分割区間でのリードタイム 1 時間の予測結果を観

測データと共に図-2 に示す。また、転移学習なしの（模擬水位データで事前学習しな

い）LSTM の予測結果も同時に示す。転移学習あり・なしの誤差の定量評価は、この

常時排水を含む分割区間において共に RMSE=0.025，NS=0.85 で、ほぼ同程度の精度

を示した。期間最大の洪水イベントの水位予測（図-2 の右の小パネル）では、転移学

習ありの予測結果は、明らかにピークをより良く再現できた。転移学習あり/なしの定

量評価では、それぞれ RMSE=0.07/0.08 m，NS=0.95/0.94 と若干ではあるが誤差の改

善が見られた。以上から、物理モデルから得られた多くの洪水イベントの模擬水位デ

ータを事前に学習した LSTM について、転移学習を導入し、常時排水を含む観測水位

データに適用することで、期間最大の洪水イベントの良好な再現に加え、常時排水を

含む区間でも転移学習なしの予測結果と同程度の予測精度が得られた。  
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図-2 期間最大の水位高を含む分割区間のリードタイム 1 時間の予測結果（小パ

ネル：左-常時と右-洪水時の拡大図）と雨量，TL=Transfer learning (転移学習)。 

Predicted water levels in 1 h lead time with/without TL, compared with observation 

and rainfall in the segmented period, including the maximum flood event. Small 

panels show the water levels during a typical drain operation (left) and a flood event. 

(right). 
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