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【はじめに】現在，医学や工学，農学など，様々な分野において人工知能  AI）の進歩が著し

い．特に，それぞれの用途ごとに学習を必要とする特化型 AI から，自然言語や画像生成など

を一つのモデルから出力できる汎用的 AI の開発が進められている．ダムや河川の流出解析に

おいてもデータ駆動型モデルとして AI を活用する事例が多数報告されている．しかし，その

多くは流域ごとに蓄積された水文情報に基づくパラメータ決定を行った特化型 AI であり,流

域の異なる対象地で利用できる汎用的な AI の開発は進んでいない.その理由として，治水を目

的とした大型のダムや河川においては，すでにデータの蓄積が進んでおり，十分な精度で予測

が可能であることが挙げられる.さらに利水を目的として管理されてきた小規模ため池におい

ても，治水機能を付与する動きがある．しかし，ダムに比べて小規模で数が多く，管理者が農

家である場合も多いため池ではデータの蓄積や水文モデルの導入が進んでいないのが現状で

ある．今後，ため池の利活用を進めていくためには，データの蓄積が進んでいないため池でも

導入が容易な汎用的 AI モデルの開発が必要不可欠である．本研究では，別のため池から取得

した長期間データを用いて学習したモデルを，対象ため池へ再学習させるデータ駆動型の深層

学習水位予測モデルの開発を試みた． 

【研究対象地】本研究では，奈良県生

駒市に位置する高山ため池および喜里

池を対象として，水文情報の観測およ

び取得を行った．高山ため池では，水

位および降水量の観測を実施し，放流

に関する記録は北倭土地改良区より提

供いただいた．喜里池では水位の観測

を実施し，降水量については気象庁が

提供している奈良地方気象台のデータ

を用いた．また，放流操作については

記録が不足していたため，水位が 1 時

間当たり 0.005m 以上減少した期間を

放流操作が行われたものとして扱った．なお，高山ため池および喜里池の貯水容量は，それぞ

れ約 58 万 m³および 12 万 m³であり，両池はいずれも独立した農業用ため池である．モデルの
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図 1.左：LSTM Encoder Decoder の概略図 

  右：モデルの学習方法 

Figure 1. Left: Diagram of LSTM Encoder Decoder 

Right: Model learning method 
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学習には，高山ため池における 2018 年 7 月から 2020 年 7 月と喜里池にける 2023 年 1 月から

2024 年 5 月までのデータを，評価には喜里池における 2024 年 6 月から 2024 年 8 月までのデ

ータを用いた． 

【モデルの概要】先行研究(Kusudo et al. 

2022)を参考に，時系列処理に適した深層学

習モデルのひとつである LSTM Encoder 

Decoder を用いた．モデルの概略図を図 1 左

に示す．本研究では，Encoder に t-24～t 時

間の水位，降雨量，1時間ごとの水位変化量，

放流操作の有無を入力し，DecoderにEncoder

から抽出した特徴量と降雨量，出力された予

測水位を入力した.Decoderからt+1～t+24時

間の水位変化量を出力させた．次に，モデル

の学習方法をA～Dの 4パターン検証した  図

1右）．Aは対象池のデータのみを用いて学習

を行ったもの，Bは事前学習用のデータのみ

を用いて学習し，対象池データを用いて検証

したもの，C・D はそれぞれ事前学習用デー

タで学習したのち，対象池のデータで再度学習を行

ったものである．Cは中間層にあたる LSTM 層と全結

合層すべての重みづけを更新し，D は出力層に最も

近い全結合層のみ再学習した．各モデルの評価に

は，二乗平均平方根誤差 RMSE）を用いた． 

【結果と考察】事前学習を行わない学習方式 Aと全

結合層のみ再学習を行った学習方式 D の予測結果

を図 2に示す．なお，学習方式 Bは実測値との差が

Aよりも大きく，学習方式 Cは Aと同様の結果とな

ったため割愛した．学習方式 Aに比べ Dは水位が変

動する際の誤差が小さくなった．特に，降雨による水位の立ち上がり時と放流開始時の誤差が

小さくなった．学習用データの期間が短い場合，図 2上のように降雨や放流による水位増減の

関係性をうまく学習できず，局所的最適解に陥りやすい．一方で学習方式 Dのように事前学習

を行うことで基本的な水位の変動要因を出力に反映しやすくなったと考えられる． 

図 3 では各予測時刻の RMSE を学習方式ごとに比較した．学習方式 D が最も RMSE が小さく，

学習方式 Aに比べ RMSE が 27.5%小さくなった．以上のことから，LSTM ED を用いた水位予測に

おいて，出力層に近い全結合層のみ再学習を行うことで他のため池のデータを対象ため池のモ

デル構築に活用できる可能性が示唆された．今後，流域規模や期間の違いによる検証を行うこ

とで，ため池管理への応用が期待される． 
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図 2.上：学習方式 A の予測結果 
下：学習方式 D の予測結果 

Figure 2. Top: Prediction results of training method A 
Bottom: Prediction results of training method D 

図 3.t+1~t+24 時間後予測における 
学習方式 A~D の RMSE 

Figure 3. RMSE of learning methods A to D in 
prediction after t+1 to t+24 hours 
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