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1．  はじめに  

近年，スマート農業の普及に伴い，圃場における無線 LAN システムと端末（スマー

トフォン等）の導入が進んでいる．両者間でやり取りされる電波は，周囲の環境や障害

物の影響を受けており，両者はチャネル状態情報（Channel state information：CSI）を

用いて通信品質の最適化を図っている．CSI には通信環境中の電波の透過・反射・減

衰・遅延・経路変更によって変化した位相や振幅の情報が含まれるため，近年これを解

析・機械学習することで室内における人の動きや人数等を推定する取組みが始まって

いる．本研究では土壌水分が変化する環境下での室内実験を通じて Wi-Fi ルーター・ス

マートフォン間の CSI を取得し，これを機械学習することにより土壌水分を推定する

モデルを作成し，その推定精度の評価とパラメータの感度解析を実施した．  

2．  研究方法  

2.1 CSI の取得方法：本研究では 2.4 GHz 帯での CSI を

取得するため，Wi-Fi ルーター（WXR5950AX12 ：

BUFFALO），スマートフォン（Xperia So-52a：Sony），

ping 送信用 PC，および CSI の取得用のキャプチャ PC

（Jetson Nano ：NVIDIA）を用いた．CSI 取得の流れは

以下の通りである．まず ping 送信用 PC の ping に応じ

て Wi-Fi ルーターがスマートフォンにサウンディング

（VHT NDP）フレームを送信する．次にスマートフォ

ンは受信したサウンディングフレームを基に 1パケット当たり 64のサブキャリアに対

する CSI を推定し，圧縮後に VHT Compressed Beamforming （CB） フレームに格納す

る．その後，スマートフォンは通信の最適化のためにこの CB フレームをルーターに送

信（フィードバック）するが，これを途中のキャプチャ PC が Wireshark（パケット取

得・プロトコル解析ソフト）を用いて補足し，CSI を取得する．   

2.2 室内での土壌水分制御実験と CSI 取得：本研究では蒸発により土壌水分制御を行

うこととし，Fig.1 に示すような実験装置を作成した．まずプラスチック製容器の底部

に多数の穴を開けた上で土壌が流出しないように不織布を敷き，下方からのセンサ挿

入と蒸発が可能な状態とした．ここに豊浦標準砂（乾燥密度 1.5 Mg m-3）を高さ 6 cm

もしくは 10 cm まで充填した．その後，土壌水分センサ（Teros12：Meter）を土層の上

部と底部に設置し，蒸発を促進するための送風ファンを容器の上下に設置した．以降，

上下の水分センサの体積含水率の平均値（θ：m3 m-3）を土層の水分量の真値として扱

う．また，ルーターとスマートフォンを容器を挟み込むように配置した．  

Fig.1 室内実験の様子  
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土壌水分は最初に飽和（θ = 0.39）させ，これが乾

燥状態（θ = 0.05）となるまで蒸発により低下させ

た．この間，θ が約 0.005 減少するたびに CSI を

2000 パケット分取得し，結果として計 69 ステップ

分の土壌水分の真値と CSI の組み合わせを得た．  

2.3 データフレームの作成：収集した CSI データ

には 1 パケット当たり 64 のサブキャリアのデータ

が存在し，各サブキャリアには 5 個の φ（φ11，φ21，

φ31，φ22，φ32）と 5 個の ψ（ψ21，ψ31，ψ41， ψ32，

ψ42），計 10 個の角度情報が収納されている．本研

究では 69 の水分ステップで 2000 パケット分のデ

ータを取得したため，64×10×69×2000 個の角度情報

が得られている．この角度情報に加え，パケットご

とに土壌水分の真値を紐づけて追加することによ

り，約１億個のデータをもつデータフレームを作成

し，これを用いて機械学習を行った．  

2.4 機械学習によるモデル作成：本研究では，土

壌水分の推定用モデルに線形回帰モデルを採用し

た．また機械学習には python の Scikit learn を用い

た．パラメータの決定と精度検証には 5 分割交差

検証を用いた．交差検証ではデータをランダムな

訓練用とテスト用のグループに分割・交差して学

習するが，データ分割のランダム性がモデル精度

に与える影響が懸念されるため，本研究では異な

るランダムシード値を用いて 100 通りのデータ分

割パターンを生成し，モデルの精度検証を行った．

なおモデルの精度評価には R2 Score（決定係数）を用いた．作成されたモデルは 640 個

の重みとバイアス値の重回帰式として構成される．重みの絶対値を比較することによ

り，水分推定に寄与する角度情報の調査と，モデル生成の一貫性の確認を行った．  

3. 結果と考察 

 Fig.2 は 100 パターンのモデルのうち，R2が最も高かったモデルにおける土壌水分の

真値と予測値の比較である．6 cm 土層の R2は 0.697，10 cm 土層の R2 0.537 であり，

100 パターンの内の中央値でも R2はそれぞれ 0.581，0.378 となった．このことから両

モデルとも比較的良い精度で土壌水分を推定できていることがわかる．パラメータの

感度解析の結果，6 cm と 10 cm 土層モデルの水分推定に寄与する角度情報には類似数

が見られた．Fig.3 にはサブキャリアごとに格納された 10 種類の角度情報に対応する

重みの絶対値を，64 サブキャリア分の平均したものを示す．両モデルにおいて ψ41 の

重み値が最も大きく，また全ての φ と ψ ごとの重みの平均値を比較した場合も，ψ の

パラメータの寄与が大きいことがわかった．結果より，本研究で作成された土壌水分

予測モデルには，土層の深度が異なっても一定の一貫性があることが示された．  
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Fig.2 土壌水分の真値と予測値の比較
Comparison of measured and predicted 

soil water content  

Fig.3 生成されたモデルの重みの比較  
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