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１. はじめに 

近年，国土強靱化を目的とした流域治水対策におい

て，既存ため池の有効活用が期待されている．一方，

地震や集中豪雨の影響によるため池決壊に伴う洪水流

出及びその下流域で発生する甚大な洪水被害が報告 1)

されており，それらのリスクの把握は重要である． 

そこで，本研究ではため池堤防における不飽和堆積

物の決壊過程に関して，不飽和浸透過程を考慮した越

流侵食過程の予測モデルを提案するとともに，筆者ら

が実施したため池堤防の越流決壊実験結果を対象に再

現計算を行い，本モデルの妥当性について検証する． 

２.不飽和浸透過程を考慮した越流侵食予測モデル 

 提案する堆積部中における不飽和浸透過程を考慮し

た侵食の予測モデルは，ため池堤防の不飽和堆積物中

における浸透過程とその堆積物上部を流下する洪水や

越流による侵食過程について同時に計算が可能である．

また，堆積物の表面を介した流動層と堆積層との水移

動についても考慮しており，河床表面内外の圧力差と

堆積層の透水係数を用いて，水移動量を計算している．

堆積物中の不飽和浸透流れおよび流動層の本解析は，

鉛直二次元場を対象に，陽解法により計算している．  

堆積層中の非定常浸透流れに関するモデルについて

は，浸透が卓越する場における掃流砂の堆積過程に関

する小笠原・関根の既往研究 2)を参考に構築している．

また，河床勾配 αの鉛直二次元場を対象として， x 軸

を河床基岩面と並行にとり，それと垂直な z 軸をとっ

て，スタガードスキームにより離散化している（図-

1）． 圧力水頭 ψと体積含水率 θおよび透水係数 k と

の関係については，式（1）に示す Richard 式が成立す

るものとしている． 
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  1) 

ここに，t は時間 Ssは比貯留係数，βは飽和時に 1，不

飽和時に 0 となる係数である．また，谷 3によると，  

 

 

図-1  浸透流解析の変数配置 

  

図-2  水浸透フラックスを求める際の変数配置図 

圧力水頭と体積含水率の関係および透水係数は，それ

ぞれ次のように表される． 
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ここに，θs は飽和体積含水率，θr は残留体積含水率， 

 Ψ0は水分特性曲線の変曲点における圧力水頭，Ksは飽

和透水係数ならびにm は係数である． 

 流動層および堆積層との境界（河床面）における水

交換フラックスを求める際に用いる変数の配置を図-2

に示す．なお，水交換フラックスは，一定の値を持つ

層厚 Δz と河床面位置までの層厚 Δz’との関係により，

次のように表される． 
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ここに，hi は流動深，Ψi,jb-1 は河床面に一番近い堆積層

内部の地点における圧力水頭である．なお，流動層に

おける流れの基礎方程式は，一様砂礫を対象とした一

次元非定常流れ 4)のものを用いる． 

３. ため池堤防の越流決壊実験を対象にした解析事例 

 ため池堤防の越流決壊に関して，提案する予測モデ

ルを用いて不飽和浸透過程および越流侵食過程につい

て再現計算し，筆者らが実施した実験結果（図-3）5)

との比較を通じてモデルを検証する．解析条件につい

ては，実験条件より θs = 0.4，θr = 0.1，Ψ0 = -0.05 cm/s，

Ks = 1.4 cm，Ss = 1.0，m = 3,とし，Δx = 20 cm，Δz = 10 

cm，Δt = 0.001 s として計算した．また，渓床勾配を 6

度，河床の粒径を 0.5cm，内部摩擦角を 37 度，堆積層

表面における容積濃度を 0.6 としマニングの粗度係数

を 0.05 m-1/3s としている．堆積層と流動層の水交換に

ついては，河床面を挟んだ鉛直交換と堤防上流側の湛

水層からの水平交換について考慮している． 

 不飽和浸透過程および越流による堆積物の侵食過程

に関する代表時間毎における解析結果を，図-4に示す．

図中の着色部分は，不飽和浸透過程に影響される堆積

物中における圧力水頭を示している．越流開始直前で

ある時刻 220 秒までの上流湛水部からの水平浸透およ

びそれ以降の越流侵食による堆積物の変形過程が示さ

れている．なお，図-4に示すとおり，越流侵食過程が

浸透過程に比べて早いことが確認される．また，決壊

過程の後半（例えば，開始時刻 270 秒）の斜面部にお

いては，流動層からの鉛直浸透の影響も受け，堆積物

はほぼ飽和状態であることが確認される． 

解析結果と実験結果 5)の比較を，図-5 に示す．全体

の傾向としてほぼ再現性が確認され，提案したモデル

の妥当性が示されている．ただし，越流初期段階

（220～260 秒）での不飽和堆積上における解析結果の

侵食速度が，実験結果に比べて少し遅い傾向を示して

いる．一方，決壊過程の後半（例えば開始時刻 270 秒

以降）での飽和堆積上においては，ほぼ再現されてい

る．この要因としては，初期段階における不飽和堆積

層上における流れの抵抗則や侵食速度式に一部におい

て課題があるとも考えられるため，今後更なる検討が

望まれる．ただし，図-5に示されるとおり，最終的に

は実験値と計算値とが収束しており，再現性に関して，

概ね妥当であると考えられる． 

  

図-3  筆者らの実験におけるため池堤防の形状 5) 

 

 

図-4  不飽和浸透および越流侵食過程の解析結果 

 

 
図-5  ため池堤防天端高さの時間的変化に関する実験結果との比較 
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