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1. はじめに 
土壌凍結現象は自然界で生じるだけでなく，人工的に土壌を凍結させることで地盤を強靭化

し，地盤改良工法としても広く利用される．そのような土壌凍結・融解過程における温度変化や
氷含有量の推移は，数値計算によって従来以上の高精度で予測可能となってきた．本研究ではこ
れまでに開発してきた数値計算ソルバーをさらに改良・発展させ，メッシュ要素や計算手法の相
違が計算結果および計算コストに与える影響を比較検討する．そして，それらの適用性および拡
張性について詳述する． 
2. 手法 
 非等温条件下の飽和凍結過程の熱移動の支配方程式はエネルギー保存則と土中の内部エネルギ

ーの総和より次のように記述できる． 
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ここで，𝐶pは土壌の体積熱容量 [J m−ϯ K−φ]，𝐿fは水の液固相間の潜熱 [J kg−φ]，𝜆は土壌の熱

伝導率 [W m−φ K−φ]，𝜌iceは氷の密度 [kg m−ϯ]，𝑇は温度 [℃]，𝑡は時間 [s]，𝜃iceは体積含氷量 

[mϯ m−ϯ]である．土壌の体積熱容量は土粒子，水，氷それぞれの体積熱容量に対して体積分率に

よる加重平均として与えられる．一方土壌の熱伝導率は土粒子，水，氷の熱伝導率に対して体積

分率による幾何平均として表される．また，(1)式には未知数として温度と体積含氷量が存在す

るため，これらの関係式が必要となる．本研究では水分保持関数と一般化 Clausius-Clapeyron 

(GCC)式を用いることで，間隙液状水と温度の関係を求め間接的に体積含氷量を求めた．ここで

(1)式を数値的に解くため，有限要素法を用いて離散

化し，Fortran を用いて数値計算ソルバーを実装し

た．有限要素法を用いることで，(1)式は次のように

書き換えることができる． 

𝐾T + 𝐶T

𝜕𝑇
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ここで𝐾T，𝐶Tはそれぞれ有限要素法より導出され

る熱伝導，熱容量マトリックスである．これらのマ

トリックスは図 1 に示した要素に応じた基底関数に

よって計算される．各要素の局所マトリックスを全

体マトリックスに組み込むことで，(2) 式を数値的

に解くことができる．本研究では，三角形一次要

素，三角形二次要素，四角形一次要素，四角形二次 
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図 1 有限要素法での二次元要素分割 

Fig. 1 Two-dimensional element 
decomposition in FEM 

(a) Linear triangular (b) Quadratic triangular

(d) Quadratic quadrilateral(c) Linear quadrilateral
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要素について計算を行い，その結果を Neumann の解析解(Alfreds, 1966)と比較し，精度検証を行

った．この際，横 5 m，縦 2 m の⾧方形計算領域に対し，三角形による要素分割数が四角形によ

る要素分割数のおよそ二倍になるように要素を分割した．また熱物性値等については菊地ら

(2025)に従うものとし，計算間隔は 30 秒，計算期間は 10 日間とした．また計算領域の左端よ

り 0.1 m から 0.5 m まで 0.1 m ごとに観測点を設定した． 

3. 結果・考察 

Gmsh(Geuzaine et al., 2009)を用いて

三角形一次要素，三角形二次要素，

四角形一次要素，四角形二次要素に

ついて要素分割した結果を表 1 に示

す．二次要素での計算では要素辺上

に節点が追加されるため，それぞれ

の形状の一次要素と比べるとマトリックスの非零成分数

が 6~８倍程度多くなった．本研究では線形方程式の求

解に BiCGSTAB を用いたため，計算時間はマトリック

スの非零成分数にほぼ比例して⾧くなった．これらの各

要素での温度の経時変化の計算結果と解析解を図 2 に示

す．どの要素形状でも温度の変化傾向は同様となり，数

値計算ソルバーへの実装が問題なくできていることが確

認できた．ここで，解析解と各観測点における温度との

平均二乗誤差を図 3 に示す．一次要素では計算コストが

低い代わりに，二次要素よりも誤差が大きく計上される

傾向が確認された．全体としてみると，三角形二次要素

が最も節点が多いため，最終的な観測点全体での RMSE

は最も小さくなった．しかし，計算時間の増加に比べれ

ば精度向上の幅は小さかった．以上より非線形性を伴う

土壌凍結現象の数値計算では，要素分割の次元や形状を

変更しても，必ずしも解の精度が向上するとは限らず，

むしろ誤差が増大する可能性もあることを念頭にいれ計

算をする必要がある．一方で，本研究で用いた数値計算

スキームはすべての手法で統一されているため，水分移

動を含む問題への拡張性は高く，ガウス求積をはじめと

する数値計算手法の精度向上も含め，今後も継続的に開

発を進めていく． 
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表 １ 計算領域の各要素による分割結果 
Table 1 Results of division by each element of the 

calculation domain 
 要素数 節点数 非零成分数 

三角形一次要素 1000 545 3633 
三角形二次要素 1000 2089 23353 
四角形一次要素 506 553 4693 
四角形二次要素 506 1611 24151 

 

 
図 3 要素分割による各観測点にお

ける解析解との平均二乗誤差 
Fig. 3 RMSE between analytical and 

numerical solutions by element 
subdivision type and observation point 

 

図 2 各観測点における温度の経時
変化の比較 

Fig. 2 Comparison of temperature 
variation over time at each point 
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