

## A new insight on $I_{RESET}$ reduction of carbon-doped GST based PCM

Q. Hubert<sup>1,2</sup>, C. Jahan<sup>1</sup>, V. Sousa<sup>1</sup>, L. Perniola<sup>1</sup>, A. Kusiak<sup>3</sup>, J.-L. Battaglia<sup>3</sup>, P. Noé<sup>1</sup>, M. Bernard<sup>1</sup>, C. Sabbione<sup>1</sup>, M. Tessaire<sup>1</sup>, F. Pierre<sup>1</sup>, P. Zuliani<sup>4</sup>, R. Annunziata<sup>4</sup>, G. Pananakakis<sup>2</sup>, B. de Salvo<sup>1</sup>

<sup>1</sup> CEA-LETI, Minatec Campus, 17 rue des martyrs, 38 054 Grenoble Cedex 9, France

<sup>2</sup> IMEP-LAHC, 3 parvis Louis Néel, BP 257, 38 016 Grenoble Cedex 1, France

<sup>3</sup> Laboratoire I2M, Université de Bordeaux, 351 cours de la libération, 33 405 Talence, Cedex, France

<sup>4</sup> STMicroelectronics, Technology R&D, via C. Olivetti 2, 20041 Agrate Brianza, Italy

Phone: +33-438-781-066 E-mail: quentin.hubert@cea.fr

### Abstract

In this paper, a detailed investigation of the electrical performances of phase-change memory devices integrating carbon-doped  $\text{Ge}_2\text{Sb}_2\text{Te}_5$  is reported. Compared to reference GST devices, up to 50% of current reduction is observed, with a programming window superior to two orders of magnitude. The RESET current reduction is attributed to an increase of the dynamic resistance of the device and to a decrease of the phase-change material thermal conductivity.

### 1. Introduction

Thanks to its unique set of features such as short read and write times, multi-level capability and ease of integration, Phase-Change Memory (PCM) is receiving widespread interest as possible Flash memory technology replacement [1]. However, the high current required to switch from the low-resistive (SET) to the high-resistive (RESET) state,  $I_{RESET}$ , limits the minimum size of the selector element, and hence the maximum memory density [1]. Reduced  $I_{RESET}$  have been observed in large PCM devices integrating carbon-doped GST (GST-C) instead of pure GST [2]. Therefore, in this paper, the main electrical performances of lightly doped GST-C-based scaled devices are deeply investigated and the programming current reductions are explained using thermal conductivity measurement and TCAD simulations.

### 2. Device fabrication and electrical characterization

Devices here studied are wall-type PCM devices, having a doped-TiN heater with a nominal area ranging from 300 nm<sup>2</sup> to 900 nm<sup>2</sup> (Fig. 1) [3]. On top of the heater, a 70 nm-thick phase-change layer is deposited at room temperature by plasma-assisted co-sputtering from one target of pure GST and one target of pure carbon. Various carbon percentages were incorporated into GST (Table I).

Transition curves (R-I and I-V) of these PCM devices were obtained by measuring the resistance, sweeping the height of the voltage pulse through a load resistance,  $R_{LOAD}$ , of 1 k $\Omega$  (Fig. 1). Fig. 2 highlights the electrical performances of the 900 nm<sup>2</sup> devices as a function of the carbon content. It is worth noting that  $I_{RESET}$  is reduced up to about 50% when the carbon content increases up to 13.8%. Moreover, the overall power required to RESET ( $P_{RESET}$ ) and SET ( $P_{SET}$ ) the cell, and the energy needed to cycle the

cell one time,  $E_{CYCLE}$ , are also reduced (Table I). However, adding carbon reduces the memory window, i.e. the ratio between the RESET and SET state resistances (Fig. 2d).

The impact of scaling on  $I_{RESET}$  was studied on GST, GST-C0.75% and GST-C3.7% based PCM devices. Fig. 3a and b show that  $I_{RESET}$  linearly scales down with the heater area while the  $I_{RESET}$  reduction increases when the heater area decreases. As a result, carbon reduces  $I_{RESET}$  even for scaled PCM devices with a 300 nm<sup>2</sup> heater area. Note that the memory window is not affected by scaling (Fig. 3c).

### 3. Interpretation and discussion about $I_{RESET}$ reduction

It has been reported that the RESET behavior of GST-based PCM devices is controlled by few parameters: the resistance in the molten state called the device dynamic resistance,  $R_{DYN}$ , (Eq. 1) and the heat dissipation during melting (Eq. 2) [4]. Eq. 2 suggests that, in the steady-state, the decrease of  $P_{RESET}$  results from a modification of the thermal conductivity,  $\kappa$  (assuming a constant melting temperature). The  $\kappa$  of GST and GST-C3.7% have been measured using photothermal radiometry method [5] and a ratio of about 2.5 between the two values is obtained (Table II). Therefore, the decrease of  $\kappa$  contributes to the decrease of  $I_{RESET}$ . Furthermore, Fig. 4 shows that  $R_{DYN}$  increases with the carbon content meaning that in GST-C based devices,  $I_{RESET}$  decreases also thanks to the increase of  $R_{DYN}$ . Finally, using the PCM model of the Sentaurus Device tool from Synopsys [6] and the GST parameters given in [7], TCAD simulations were performed. A good agreement between the simulated and the measured transition curves of GST based devices is obtained (Fig. 5). Taking only into account the decrease of  $\kappa$  by a factor 2.5, a decrease of  $I_{RESET}$  is observed. Then, to fit the measured transition curves of GST-C3.7% based devices and get an  $I_{RESET}$  reduction equal to the measured one, the increase of  $R_{DYN}$  was added.

### 4. Conclusions

In this study, we show that the  $I_{RESET}$  and  $P_{RESET}$  of carbon-doped GST scaled PCM devices are reduced up to 50% while maintaining a memory window higher than two orders of magnitude. TCAD simulations and thermal conductivity measurement strongly suggest that these reductions could be explained by two main factors: an increase of the dynamic resistance of the device and a decrease of the thermal conductivity of the phase-change material.

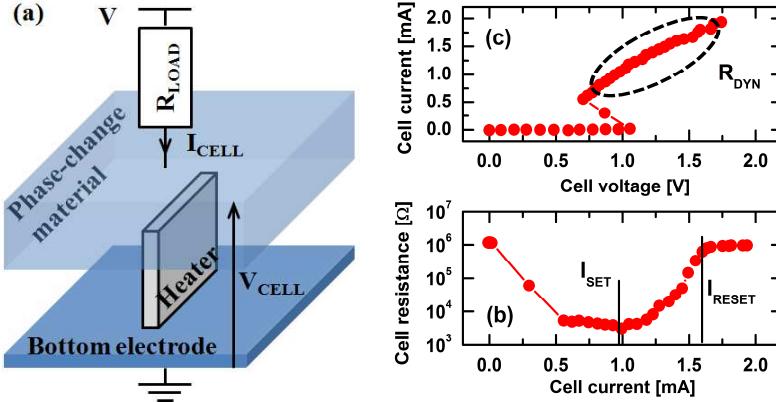



Fig. 1 Scheme of the wall-type device studied (a). Typical transition curves (R-I (b) and I-V (c) curves) of the GST-based PCM device with the 900 nm<sup>2</sup> heater.

Table I Electrical performances of the PCM devices with the 900 nm<sup>2</sup> heater.

| Wafer number | Carbon content | $I_{RESET}$ & $I_{SET}$ reduction | $P_{RESET}$ & $P_{SET}$ reduction | $E_{CYCLE}$ reduction | Memory window |
|--------------|----------------|-----------------------------------|-----------------------------------|-----------------------|---------------|
| 01           | 0 at. %        | ---                               | ---                               | ---                   | 630           |
| 02           | 0.75 at. %     | 20% - 21%                         | 22% - 25%                         | 25%                   | 708           |
| 03           | 1.5 at. %      | 23% - 22%                         | 24% - 22%                         | 24%                   | 500           |
| 04           | 2.4 at. %      | 23% - 25%                         | 25% - 24%                         | 27%                   | 432           |
| 05           | 3.7 at. %      | 25% - 22%                         | 18% - 24%                         | 22%                   | 333           |
| 06           | 6.9 at. %      | 29% - 23%                         | 22% - 34%                         | 28%                   | 482           |
| 07           | 13.8 at. %     | 48% - 42%                         | 45% - 57%                         | 50%                   | 203           |

The carbon contents were measured using PIXE, NRA and RBS methods with an overall precision of  $\pm 0.5\%$ .

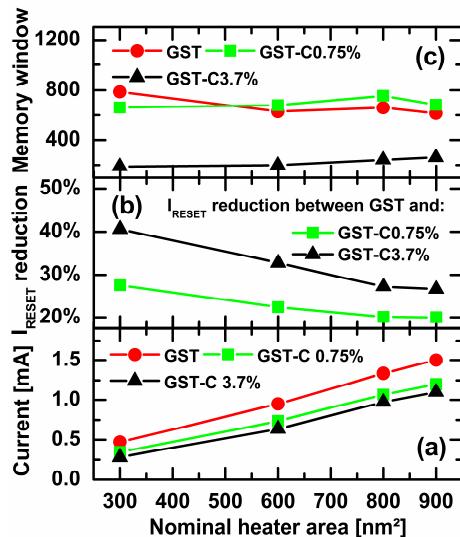



Fig. 3  $I_{RESET}$  (a),  $I_{RESET}$  reductions (b) and memory window (c) of GST, GST-C0.75% and GST-C3.7% based PCM devices as a function of the nominal heater area.

$$P_{RESET} = R_{DYN} \cdot I_{RESET}^2 \quad (1)$$

$$C \cdot \frac{\partial T}{\partial t} + \text{div}(-\kappa \cdot \text{grad}(T)) = \rho \cdot J^2 \quad (2)$$

## References

- [1] G. W. Burr *et al.*, J. Vac. Sci. Technol. B, 28, pp. 223-262, 2010
- [2] Q. Hubert *et al.*, Proc. IMW, pp. 1-4, 2012
- [3] R. Annunziata *et al.*, IEDM Tech. Dig., pp. 1-4, 2009
- [4] V. Sousa *et al.*, Proc. E\*PCOS, 2012
- [5] J.-L. Battaglia *et al.*, J. Appl. Phys., 107, pp. 044314, 2010
- [6] B. Schmithusen *et al.*, Proc. SISPAD, pp. 57-60, 2008
- [7] A. Redaelli *et al.*, J. Appl. Phys., 103, pp. 111101, 2008

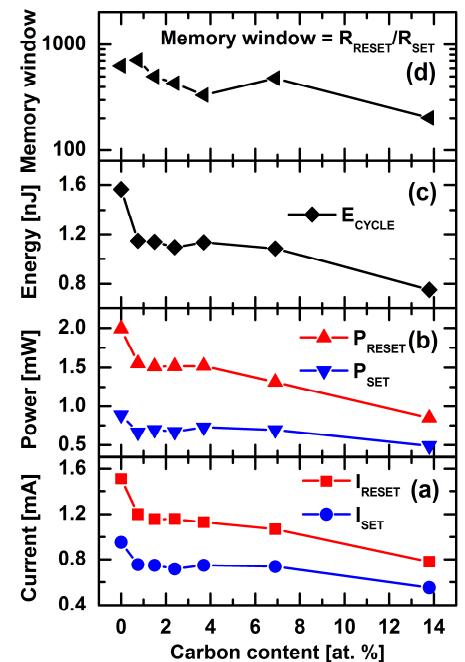



Fig. 2 Electrical performances of PCM devices with the 900 nm<sup>2</sup> heater as a function of the carbon content: programming currents (a) and powers (b), energy to RESET then SET the device (c), memory window (d).

Table II Ratio between the thermal conductivity of GST and the one of GST-C3.7% at various temperature

| Temperature | $K_{GST} / K_{GST-C3.7\%}$ |
|-------------|----------------------------|
| 85°C        | 2.4                        |
| 135°C       | 2.3                        |
| 185°C       | 2.0                        |
| 265°C       | 3.0                        |
| 285°C       | 3.0                        |

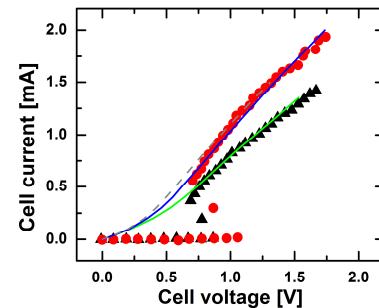



Fig. 4  $I_{RESET}$  of the GST and GST-C based PCM devices as a function of the cell dynamic resistance.

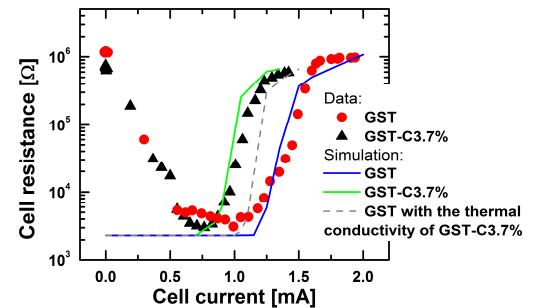



Fig. 5 Measured and simulated I-V (left) and R-I (right) curves of the GST and GST-C3.7% based PCM devices. The dash line represents the simulated transition curves of GST based devices with the thermal conductivity of GST-C3.7%.