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Abstract

Ge MOSFETs with all thermal processes preformed by mi-
crowave anneal (MWA) has been realized. The full MWA
process is <390 °C. It significantly outperforms conven-
tional RTA process in 3 aspects: (1) diffusion-less junction,
(2) increased Cox and healed gate dielectric/channel inter-
face, and (3) ultrathin 7.5nm nickel mono-germanide with
lower sheet resistivity and contact resistivity. Compared to
conventional RTA, the MWA gives 50% and 24% drive cur-
rent enhancement for p- and n-MOSFET, respectively.
These data show that the low temperature MWA is a prom-
ising thermal process technology for Ge MOSFETs manu-
facturing.

Introduction
For dopant activation in Ge MOSFETSs, RTA process > 600
°C have been wildly adopted[1-2]. Such high temperature
process causes the degradation of gate dielectric/ Ge channel
interface, and results in severe dopant diffusion in
source/drain region with Ge out-diffusion. In addition, for
lowering the contact resistance to germanium, NiGe is the
most promising candidate due to its low resistivity [3-4].
In order to thin down the thickness of NiGe, reducing the
process temperature is necessary. However, a lower tem-
perature results in a higher silicide resistance due to the
small crystallite sizez. MWA is promising for achieving
advanced Ge MOSFETSs because of its unique low tempera-
ture due to apparent non-thermal energy transfer that is not
yet fully understood[5]. The advantages for Ge MOSFETs
with MWA are summarized in Fig. 1.
Results and Discussion

Diffusion-Less Junction. The n* and p* doping are intro-
duced by P and BF, implants at a dose of 1x10" cm™, re-
spectively. The peak temperature of dopant activation by
MWA was 390 °C. Fig. 2(a) shows a significant diffusion
of P after RTA and no P diffusion after MWA. For boron,
comparable diffusion-less concentration profiles after MWA
and RTA are observed and presented in Fig. 2(b). The ac-
tivated levels of P and B after MWA are 2x10" cm™ and
7.5%10" cm”, respectively. In Fig. 4, the deep junction
of P formed by RTA results in the lower Rs. Thus, ultra
shallow junctions can clearly be reached by the low temper-
ature MWA.

Gate Dielectric/Channel Interface. The TiN/Al,O5/GeO,
structure of the n- and p-MOS capacitors for C-V character-
izations were fabricated on (100) bulk Ge. After interfacial
layer formation, Al,0; was deposited by ALD. From Figs.
4 and 5, an increase of C,, and a decrease of the interfacial
trap density after MWA were observed. The gate capaci-
tance increases after MWA, which is due to less Ge
out-diffusion during low temperature MWA than RTA. The

device on/off characteristics are in Figs. 6 and 7. Compared
to RTA, MWA produces 50% and 24% drive current en-
hancements for p- and n-MOSFET, respectively. Their off
leakage currents are similar to those by RTA processing.
Ultrathin 7.5Snm Ni Mono-Germanide. In Fig. 8(a), a 7.5
nm NiGe is produced by MWA which meets the target of
year 2022 in the ITRS roadmap[6]. The NiGe layer is fab-
ricated on (100) epi-Ge on Si. Unreacted metal was re-
moved after the 1™ anneal. Afterward, the 2™ anneal was
performed. The TEM images show an ultrathin NiGe layer
with a smooth interface fabricated by MWA at two different
microwave power levels during the 2" anneal. Fig. 8(c)
shows the result of RTA germanide anneal. The NiGe thick-
ness by RTA is about 2 nm thicker than by MWA. The tem-
perature ramp up curves of MWA for NiGe formation are
shown in Fig. 9. The temperature ramped at 2 to 6 °C/sec
depending on the microwave power. In Fig. 10, Rs of Ni-
Ge by two-step MWA or RTA are summarized. Lower Rs
could be obtained by increasing the MWA power with
shortened process time, which lowers the peak temperature
by 40 °C compared to RTA. In Fig. 11(a), the XRD spec-
trum for the anneal condition of MWA 145 °C + MWA 270
°C shows strong (111) preferred crystal orientation. In Fig
11(b), an increasing power with shortened process time of
2" step annealing leads to a larger crystallite size. In addi-
tion, by lowering the 1* step annealing temperature of RTA
for reducing the thickness of NiGe, a low intensity of RTA
150 °C + RTA 330 °C shows that it is hard to achieve both
the well-defined crystalline structure and the scaling of the
NiGe layer. However, the MWA results show that a thinner
and lower Rs of NiGe layer was obtained because of the
increased crystallinity at low temperature.

Conclusion
For the first time, Ge MOSFETSs with all thermal processes
performed by microwave has been realized. Diffusion-less
junctions were achieved in Ge was induced by MWA.
Compared to the conventional RTA, all MWA processing
yields 24% and 50% drive current enhancements for n- and
p-MOSFET, respectively due to increased of C,, and better
gate dielectric/Ge interface. Finally, a record ultrathin 7.5
nm nickel mono-germanide thickness is achieved by
two-step low temperature MW A process.
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Fig. 9 The temperature profiles of MWA for
NiGe formation.

Fig.8 HR-TEM images of NiGe by two-step MWA process (a) and (b) using lower power in
the 2" step than (a) and by two-step RTA (c).
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Fig. 10 Rs of Ni germanide dafter 1** anneal Fig. 11 XRD 26-scan of nickel germanide formed by MWA or RTA. MWA 145 °C + MWA 270
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