

## N-type Doping Effect of Transferred MoS<sub>2</sub> and WSe<sub>2</sub> Monolayer

Chih-Pin Lin<sup>1</sup>, Pang-Shiuan Liu<sup>1</sup>, Li-Syuan Lyu<sup>2</sup>, Ming-Yang Li<sup>3</sup>, Chia-Chin Cheng<sup>4</sup>, Tsung-Han Lee<sup>1</sup>, Wen-Hao Chang<sup>2</sup>, Lain-Jong Li<sup>5</sup>, and Tuo-Hung Hou<sup>1</sup>

<sup>1</sup> Department of Electronics Engineering and Institute of Electronics, National Chiao Tung University, Hsinchu, Taiwan;

<sup>2</sup> Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan; <sup>3</sup> Research Center for Applied Sciences, Academia Sinica, Taipei 10617, Taiwan; <sup>4</sup> Department of Material Science and Engineering, National Chiao Tung University, Hsinchu 300, Taiwan; <sup>5</sup> Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia; Tel: +86-3-5712121#54219; E-mail: [lawliet800619@yahoo.com.tw](mailto:lawliet800619@yahoo.com.tw)

### Abstract

We investigated CVD-synthesized MoS<sub>2</sub> and WSe<sub>2</sub> monolayers before and after the transfer process. N-type doping effects for both TMDs after transfer were observed by PL, Raman and conductance measurements. The effect is attributed to defect generation induced by the mechanical release from the substrate, which was also confirmed by PL measurements at low temperature.

### 1. Introduction

Large-area two-dimensional (2D) transition metal dichalcogenides (TMDs) synthesized by chemical vapor deposition (CVD) have been widely investigated. However, the choice of substrates are often limited by the high growth temperature (typically above 700°C) used for CVD synthesis. Numerous methods have been developed in order to transfer CVD-synthesized TMDs to arbitrary substrates [1], which is critical to enable future TMD-based flexible electronics [2] and heterogeneous integration with other materials. However, how the transfer process affects the properties of TMD films has not been comprehensively investigated. In this study, we report on an n-type doping effect of CVD synthesized MoS<sub>2</sub> and WSe<sub>2</sub> after transfer and examine its root cause.

### 2. Experiment Procedures

MoS<sub>2</sub> and WSe<sub>2</sub> were synthesized on sapphire substrates using the CVD technique. MoS<sub>2</sub> was deposited by sulfurizing MoO<sub>3</sub> (at 700°C with Ar carried gas), while WSe<sub>2</sub> was deposited by selenizing WO<sub>3</sub> (at 850°C with Ar/H<sub>2</sub> carried gas) powders (Fig. 1). The as-deposited MoS<sub>2</sub> and WSe<sub>2</sub> were n-type and p-type conducting, respectively, confirmed by field-effect measurements. After synthesis, MoS<sub>2</sub> and WSe<sub>2</sub> were transferred by a surface-energy-assisted process (Fig. 2) [1]. Polymethylmethacrylate (PMMA) was first coated on MoS<sub>2</sub> & WSe<sub>2</sub>, then immersed into ammonia and BOE, respectively [3-4]. TMD films were released from sapphire because of the significant difference in surface energy between TMDs and sapphire. Optical properties before and after TMD transfer were characterized by photoluminescence (PL) and Raman spectroscopy. Low temperature PL (LTPL) at 4K was also performed for defect characterization.

### 3. Results and Discussion

Fig. 3 and Fig. 4 show the PL and Raman spectroscopy

of MoS<sub>2</sub> and WSe<sub>2</sub> measured before and after transfer. Both samples were transferred to sapphire in order to eliminate the substrate effect. For MoS<sub>2</sub>, decreased PL intensity with an apparent red-shift of the peak was observed after transfer (Fig. 3 (a)). Raman spectroscopy (Fig. 3 (b)) shows about 1 cm<sup>-1</sup> shift of the A<sub>1g</sub> phonon mode. Both PL and Raman spectroscopy confirm that transferred MoS<sub>2</sub> became more n-type doped [5-6]. However, PL and Raman spectroscopy of as-deposited samples (without PMMA coating and transfer) immersed into the ammonia solution were intact, indicating that the doping effect was not induced by the wet etching (Fig. 3 (c-d)). The optical properties shown in Fig. 4 also confirm a similar n-type doping effect in WSe<sub>2</sub> after transfer [7]. One plausible explanation is that this n-type doping effect was induced by the generation of S/Se vacancies [8] during the mechanical release process. This effect is favorable for n-type MoS<sub>2</sub> but undesirable for p-type WSe<sub>2</sub>. Fig. 5 shows the conductance measurements of the pristine and transferred films. The conductance increased in transferred MoS<sub>2</sub> (with Mo/Ni contact) but decreased in WSe<sub>2</sub> (with Pd contact). LTPL (Fig. 6) taken at 4K shows strong defect-bound exciton (X<sub>B</sub>) peaks induced by the transfer process [9], confirming the defect formation.

### 4. Conclusions

The n-type doping effect for both MoS<sub>2</sub> and WSe<sub>2</sub> has been confirmed by PL, Raman, and conductance measurements. This effect was not induced the wet chemical etching, but more likely by the defect generation during the mechanical release process. S/Se vacancies are known to introduce n-type doping in TMDs, and significant defect-bound exciton peaks are also observed at low temperature. These findings suggest that the transfer process can be engineered to enhance the n-type doping and thus device performance of MoS<sub>2</sub>. However, further optimizations are required to minimize its adverse impact on p-type WSe<sub>2</sub>.

### References

- [1] A. Gurarslan *et al.*, *ACS Nano*. **8** (2014) 11522. [2] J. Pu, *et al.*, *Nano Lett.* **12** (2012) 4013. [3] D. N. Nath *et al.*, *Device Research Conference* (2014) 89. [4] A. L. Elias *et al.*, *ACS Nano*. **7** (2013) 5235. [5] S. Mouri *et al.*, *Nano Lett.* **13** (2013) 5944. [6] B. Chakraborty *et al.*, *Phys. Rev. B* **85** (2012) 161409. [7] D. H. Kang *et al.*, *ACS Nano*. **9** (2015) 1099. [8] S. McDonnell *et al.*, *ACS Nano*. **8** (2014) 2880. [9] S. Tongay *et al.*, *Sci. Rep.* **3** (2013) 2657.

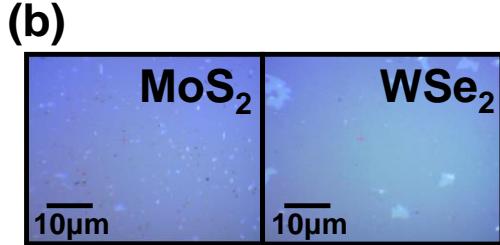
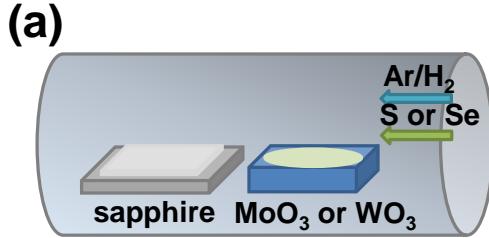




Fig.1 (a) Schematic illustration of CVD synthesis of TMDs in a furnace. (b) Optical image of the as-deposited MoS<sub>2</sub> and WSe<sub>2</sub> monolayers on sapphire substrates.

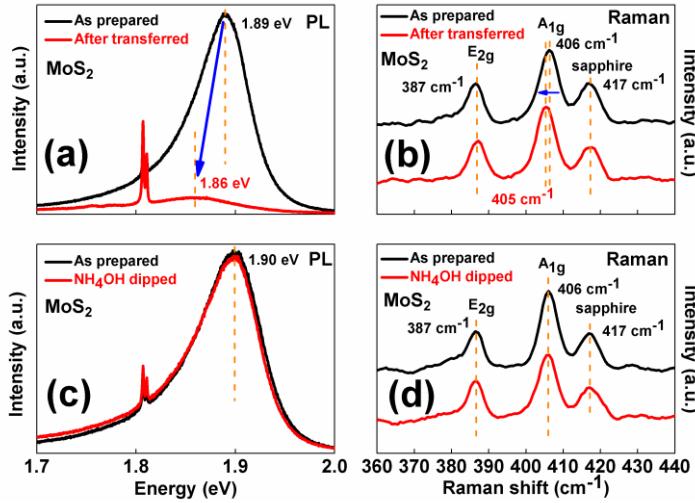



Fig.3 (a-b) PL and Raman spectroscopy of MoS<sub>2</sub> before and after transfer. PL intensity was severely degraded with an apparent red shift, and A<sub>1g</sub> phonon mode was also shifted. The optical measurements indicate the n-type doping after transfer. (c-d) Optical properties of the as-deposited MoS<sub>2</sub> films before and after immersed into ammonia, showing no apparent difference.

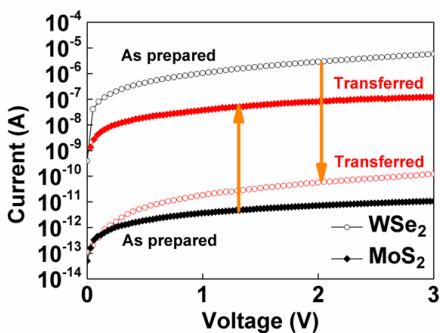



Fig.5 Conductance measurements of MoS<sub>2</sub> and WSe<sub>2</sub> before and after transfer. The conductance was increased for n-type MoS<sub>2</sub> while decreased for p-type WSe<sub>2</sub> because of the n-type doping effect.

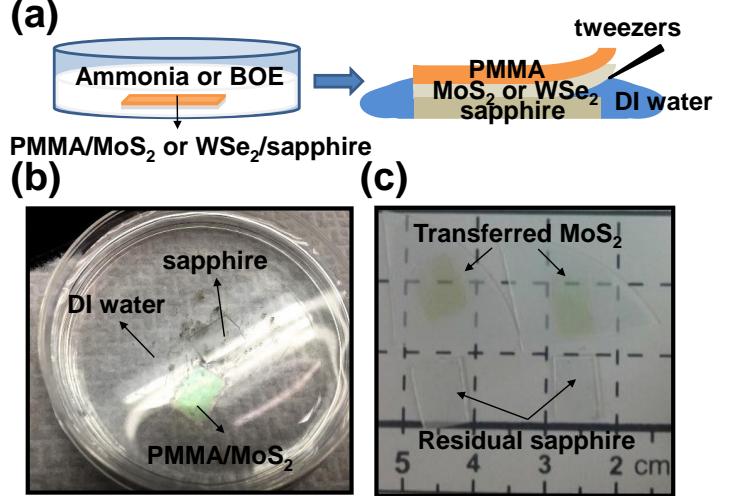



Fig.2 (a) Schematic diagram of the transfer process for MoS<sub>2</sub> and WSe<sub>2</sub>. (b) PMMA/TMDs were released from sapphire assisted by different surface energy between TMDs and sapphire. (c) Transferred MoS<sub>2</sub> and residual sapphire substrates.

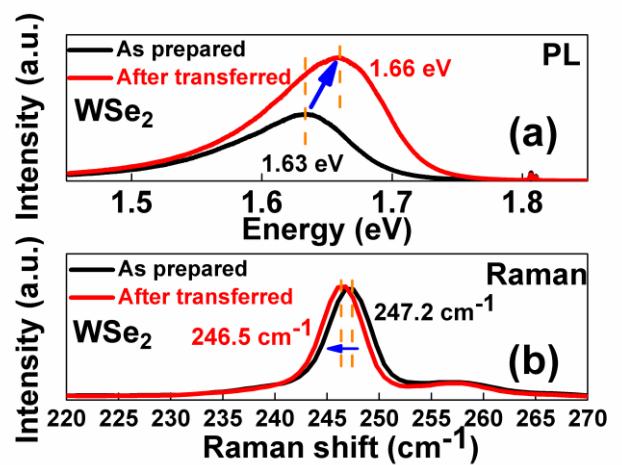



Fig.4 (a) PL and (b) Raman spectroscopy of WSe<sub>2</sub> before and after transfer. PL intensity was increased with an apparent blue shift, and Raman peak was also shifted.

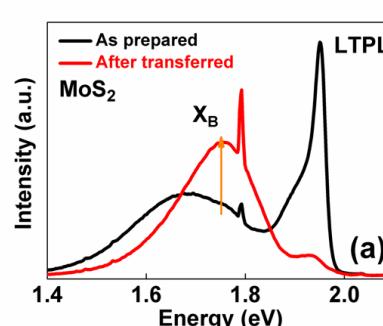



Fig.6 LTPL measurements at 4K to characterize defects of pristine and transferred (a) MoS<sub>2</sub> and (b) WSe<sub>2</sub> films. X<sub>B</sub> peak was significantly increased because of the neutral excitons bound to the defects induced by the transfer process.