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Abstract 

High-efficiency grating coupler on a standard 220 nm 

SOI wafer without back reflector is designed based on 

deep learning. The neural network enables us to explore 

the wide design-parameter space of the grating coupler. 

As a result, we achieve the peak coupling efficiency of 

73.6%. 

 

1. Introduction 

Silicon (Si) photonics is one of the most interesting plat-

forms for the next-generation information processing and tel-

ecommunication. A Si-on-insulator (SOI) structure offers two 

notable advantages: strong optical confinement owing to the 

high refractive index contrast between Si (n=3.5) and SiO2 

(n=1.45) and complementary-metal-oxide-semiconductor 

(CMOS) compatibility. These features allow ultracompact in-

tegration of optical components, making it possible to realize 

large-scale photonic integrated circuits (PICs) [1]. As a PIC 

comprises many optical components, their performances di-

rectly affect the whole performance of a PIC. Design of opti-

cal components, however, has inevitably been accompanied 

by a restriction of the number of design parameters based on 

designer’s consideration and/or intuition because the design-

parameter space for optical components is too large for brute-

force search using time-consuming FDTD simulation. In par-

ticular, the design of grating couplers encounters this re-

striction. Although the coupling efficiency of grating cou-

plers has been improved gradually [2][3], there is still room 

for exploring its design-parameter space more deeply. 

In this paper, we examine to use deep learning for design-

ing an efficient grating coupler on a standard 220 nm SOI wa-

fer without a back reflector. The design optimization can be 

accelerated by using neural networks (NN), which have re-

cently been used to approximate many physics simulations 

[4][5]. As a result, we find high-efficiency grating coupler 

with a peak coupling efficiency of 73.6%. 

 

2. Numerical model and results 

   In this work, we optimize the coupling efficiency of a 

grating coupler between a single-mode optical fiber and the 

fundamental TE mode of a Si waveguide. We assume a stand-

ard SOI wafer with a 220-nm-thick Si layer and a 2-m-thick 

buried oxide (BOX) layer as shown in Fig. 1. The thickness 

of the top SiO2 cladding is 720 nm. We assume that there is 

no back reflector at the bottom of the BOX layer. The incident 

angle of the single-mode optical fiber is fixed to be 10. We 

define the grating as 24 trench widths and 24 tooth widths. 

Therefore, these 48 design parameters are optimized to max-

imize the coupling efficiency. The etching depth of the grat-

ing is fixed to be 105 nm in this simulation. 

   In the first step of the design optimization, we train a NN 

on a dataset to predict coupling efficiency from the design 

parameters as shown in Fig. 2. Once trained, the NN can cal-

culate the gradient of the output with respect to the input pa-

rameters analytically instead of numerically. Then, in the sec-

ond step, we optimize the design parameters using the trained 

NN by a gradient descent method.  

   In the first step, we use 2D-FDTD simulations to generate 

5,000 training instances, each of which comprises a design 

parameter and its coupling efficiency spectrum. We obtain 

randomly-fluctuated design parameters by adding random 

displacements to the seed structure that is designed according 

to [3]. We use 3,500 data for training, while other 1,000 and 

500 data are left as a validation dataset and a test dataset, re-

spectively. We use a fully connected network, with three lay-

ers and 48 units per layer since the input data are 48-dimen-

tional vectors instead of tensors. The outputs are spectra sam-

pled at 100 points between 1.5 m and 1.6 m wavelengths. 

The activation function is ReLU and the dropout ratio is 0.01. 

These hyperparameters are determined by shuffle-split-cross 

validations.  

 
 
Fig. 1 Cross-sectional schematic layout of a grating coupler on a 

standard SOI wafer. 

 
 

Fig. 2 The neural network architecture has the trench widths and 

tooth widths as its inputs and the coupling efficiencies at differ-

ent wavelengths as its outputs. 
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The relationship between predicted and true coupling ef-

ficiency at a wavelength of 1550 nm is shown in Fig. 3. We 

observe that the error is lower than 5%pt for all the data in-

cluded in the test dataset and predicted coupling efficiency 

spectrum is very close to the true one even in the worst case 

as shown in Fig. 3(c). 

In the second step, we optimize the design parameters by 

a gradient method, where the gradient of a loss function with 

respect to the design parameters is calculated using the 

trained NN as shown in Fig. 4. The loss function 𝐿𝑜𝑠𝑠 is 

given by 

 

𝐿𝑜𝑠𝑠 = −𝐶𝐸 + 𝑝 ⋅ ‖𝒙𝑡 − 𝒙intial‖ (1) 

 
where 𝐶𝐸 is the coupling efficiency at a wavelength of 1550 

nm and 𝑝 is a penalty parameter. The second term of the loss 

function is the product of the penalty parameter and the Eu-

clidean distance between the initial structure and the current 

structure. We optimize the penalty parameter to suppress the 

large displacement from the initial seed structure. The num-

ber of learning iterations is set to 10,000. We selecte Adam 

(adaptive moment estimation) amang several gradient 

methods because Adam is known to show the fastest 

convergence in many problems [6]. Note that we can use a 

gradient-based method because the trained NN can quickly 

calculate the gradient analytically instead of numerically; oth-

erwise, we can only use a derivative-free method which re-

quires more function counts than a gradient-based method. 

   Figure 5 shows the convergence of the coupling efficien-

cies calculated by FDTD and the NN. The calculation by 

FDTD was performed after the optimization for validation. 

The values calculated by the NN slightly deviate from that 

calculated by FDTD as they converge. This is due to the in-

accuracy of the NN’s calculation. Nevertheless, we observe 

relatively smooth convergence during 15,000 iterations be-

cause the NN can properly evaluate the gradient of the loss 

function. Figure 6 shows the coupling efficiency spectra of 

the initial and the optimized structure. We achieve the maxi-

mum coupling efficiency of 73.6% at a wavelength of 1550 

nm, which is one of the best efficiencies among grating cou-

plers on a standard SOI wafer with no back reflector. Thus, 

we successfully explore a wider design-parameter space of a 

grating coupler than ever before using deep learning. 

 

 

Fig. 5 Convergence of the 

coupling efficiencies calcu-

lated by FDTD and NN. 

 
Fig. 6 Coupling efficiency 

spectra of the initial and opti-

mized structure. 

 

3. Conclusions 

   We have designed high-efficiency grating coupler on a 

standard 220 nm SOI wafer without back reflector based on 

deep learning and demonstrated the maximum coupling effi-

ciency of 73.6%. The examined design method is also prom-

ising for designing other optical components. 
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Fig. 3 (a) Predicted and true coupling efficiency values at a 

wavelength of 1550 nm for the test dataset. The predicted and 

true coupling efficiency spectra of (b) the best case and (c) the 

worst case. 

 
 
Fig. 4 Gradient-based optimization using the trained neural net-

work. 
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