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Abstract

High-efficiency grating coupler on a standard 220 nm
SOI wafer without back reflector is designed based on
deep learning. The neural network enables us to explore
the wide design-parameter space of the grating coupler.
As a result, we achieve the peak coupling efficiency of
73.6%.

1. Introduction

Silicon (Si) photonics is one of the most interesting plat-
forms for the next-generation information processing and tel-
ecommunication. A Si-on-insulator (SOI) structure offers two
notable advantages: strong optical confinement owing to the
high refractive index contrast between Si (n=3.5) and SiO»
(n=1.45) and complementary-metal-oxide-semiconductor
(CMOS) compatibility. These features allow ultracompact in-
tegration of optical components, making it possible to realize
large-scale photonic integrated circuits (PICs) [1]. As a PIC
comprises many optical components, their performances di-
rectly affect the whole performance of a PIC. Design of opti-
cal components, however, has inevitably been accompanied
by a restriction of the number of design parameters based on
designer’s consideration and/or intuition because the design-
parameter space for optical components is too large for brute-
force search using time-consuming FDTD simulation. In par-
ticular, the design of grating couplers encounters this re-
striction. Although the coupling efficiency of grating cou-
plers has been improved gradually [2][3], there is still room
for exploring its design-parameter space more deeply.

In this paper, we examine to use deep learning for design-
ing an efficient grating coupler on a standard 220 nm SOI wa-
fer without a back reflector. The design optimization can be
accelerated by using neural networks (NN), which have re-
cently been used to approximate many physics simulations
[4]1[5]. As a result, we find high-efficiency grating coupler
with a peak coupling efficiency of 73.6%.

2. Numerical model and results

In this work, we optimize the coupling efficiency of a
grating coupler between a single-mode optical fiber and the
fundamental TE mode of a Si waveguide. We assume a stand-
ard SOI wafer with a 220-nm-thick Si layer and a 2-um-thick
buried oxide (BOX) layer as shown in Fig. 1. The thickness
of the top SiO» cladding is 720 nm. We assume that there is
no back reflector at the bottom of the BOX layer. The incident
angle of the single-mode optical fiber is fixed to be 10°. We
define the grating as 24 trench widths and 24 tooth widths.
Therefore, these 48 design parameters are optimized to max-
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Fig. 1 Cross-sectional schematic layout of a grating coupler on a
standard SOI wafer.

imize the coupling efficiency. The etching depth of the grat-
ing is fixed to be 105 nm in this simulation.

In the first step of the design optimization, we train a NN
on a dataset to predict coupling efficiency from the design
parameters as shown in Fig. 2. Once trained, the NN can cal-
culate the gradient of the output with respect to the input pa-
rameters analytically instead of numerically. Then, in the sec-
ond step, we optimize the design parameters using the trained
NN by a gradient descent method.

In the first step, we use 2D-FDTD simulations to generate
5,000 training instances, each of which comprises a design
parameter and its coupling efficiency spectrum. We obtain
randomly-fluctuated design parameters by adding random
displacements to the seed structure that is designed according
to [3]. We use 3,500 data for training, while other 1,000 and
500 data are left as a validation dataset and a test dataset, re-
spectively. We use a fully connected network, with three lay-
ers and 48 units per layer since the input data are 48-dimen-
tional vectors instead of tensors. The outputs are spectra sam-
pled at 100 points between 1.5 um and 1.6 um wavelengths.
The activation function is ReLU and the dropout ratio is 0.01.
These hyperparameters are determined by shuffle-split-cross
validations.
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Fig. 2 The neural network architecture has the trench widths and
tooth widths as its inputs and the coupling efficiencies at differ-
ent wavelengths as its outputs.
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Fig. 3 (a) Predicted and true coupling efficiency values at a
wavelength of 1550 nm for the test dataset. The predicted and
true coupling efficiency spectra of (b) the best case and (c) the
worst case.

The relationship between predicted and true coupling ef-
ficiency at a wavelength of 1550 nm is shown in Fig. 3. We
observe that the error is lower than 5%pt for all the data in-
cluded in the test dataset and predicted coupling efficiency
spectrum is very close to the true one even in the worst case
as shown in Fig. 3(c).

In the second step, we optimize the design parameters by
a gradient method, where the gradient of a loss function with
respect to the design parameters is calculated using the
trained NN as shown in Fig. 4. The loss function Loss is
given by

Loss = —CE +p - [|x; — Xingalll (1)

where CE is the coupling efficiency at a wavelength of 1550
nmand p is a penalty parameter. The second term of the loss
function is the product of the penalty parameter and the Eu-
clidean distance between the initial structure and the current
structure. We optimize the penalty parameter to suppress the
large displacement from the initial seed structure. The num-
ber of learning iterations is set to 10,000. We selecte Adam
(adaptive moment estimation) amang several gradient
methods because Adam is known to show the fastest
convergence in many problems [6]. Note that we can use a
gradient-based method because the trained NN can quickly
calculate the gradient analytically instead of numerically; oth-
erwise, we can only use a derivative-free method which re-
quires more function counts than a gradient-based method.
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Fig. 4 Gradient-based optimization using the trained neural net-
work.

Figure 5 shows the convergence of the coupling efficien-
cies calculated by FDTD and the NN. The calculation by
FDTD was performed after the optimization for validation.
The values calculated by the NN slightly deviate from that
calculated by FDTD as they converge. This is due to the in-
accuracy of the NN’s calculation. Nevertheless, we observe
relatively smooth convergence during 15,000 iterations be-
cause the NN can properly evaluate the gradient of the loss
function. Figure 6 shows the coupling efficiency spectra of
the initial and the optimized structure. We achieve the maxi-
mum coupling efficiency of 73.6% at a wavelength of 1550
nm, which is one of the best efficiencies among grating cou-
plers on a standard SOI wafer with no back reflector. Thus,
we successfully explore a wider design-parameter space of a
grating coupler than ever before using deep learning.
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Fig. 5 Convergence of the Fig. 6 Coupling efficiency
spectra of the initial and opti-

mized structure.

coupling efficiencies calcu-
lated by FDTD and NN.

3. Conclusions

We have designed high-efficiency grating coupler on a
standard 220 nm SOI wafer without back reflector based on
deep learning and demonstrated the maximum coupling effi-
ciency of 73.6%. The examined design method is also prom-
ising for designing other optical components.

Acknowledgements
This work was partly commissioned by the New Energy and In-
dustrial Technology Development Organization (NEDO).

References

[1] B. Jalali and S. Fathpour, J. Lightw. Technol. 24 (2006) 4600-
4615

[2] D. Taillaert et al., Japan. J. Appl. Phys. 45 (2006) 6071-6077

[3] R. Marchetti et al., Sci. Rep. 7 (2017) 16670.

[4] J. Peurifoy et al., Sci. Adv. 4 (2018) eer4206

[5] T. Asano and S. Noda, Opt. Express 26 (2018) 32704-32716

[6] D. Kingma and J. Ba, arXiv:1412.6980v8(2015)

-76 -



