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Abstract 

Semiconductor quantum dots (QDs) are a promising 

host for quantum computers because of their scalability. 

However, as the number of QDs grows, the time required 

to tune the potential increases, hampering scaling up. Ma-

chine learning is a promising approach to automate and 

expedite this tuning process. We propose to use model-

based reinforcement learning (MBRL) for auto-tuning 

QDs. MBRL is expected to offer more generality because 

it models the environment and can divert the constructed 

model for other tasks. However, it remains to be seen 

whether the environment model can be constructed 

properly despite the sparse characteristic of QDs. In this 

work, we investigate the applicability of MBRL in this re-

gard by emulating auto-tuning of a QD device to a single 

QD condition using MBRL on pre-measured data.  

 

1. Introduction 

Semiconductor QDs are promising for dense qubit inte-

gration because of their small footprint and compatibility 

with semiconductor technologies. One of the severe impedi-

ments to explore novel QD structures or materials is the labor-

intensive potential tuning process required to make the de-

vices function as qubits. To partially automate the tuning, ma-

chine learning techniques have been studied [1,2]; however, 

these efforts have been limited to specific tuning tasks or sin-

gle device structures.  

To overcome the limitation in the previous works, we pro-

pose a MBRL system for QD tuning. In MBRL, a model for 

the environment is constructed and is used for learning. Since 

this model can be diverted for other tasks and/or similar en-

vironments, we expect that the MBRL approach yields tuning 

protocols with greater generality. 

Tuning of QDs is usually accomplished by finding spe-

cific target patterns in charge stability diagrams obtained by 

sweeping two gate voltages or in one-dimensional character-

istics by ray-based method. Unfortunately, such target pat-

terns are only sparsely distributed. Having to discover this 

sparse reward signal may be an obstacle to constructing the 

environment model in automating the tuning process using 

MBRL. In this work, we verify proper construction of an en-

vironment model and successful learning based on the con-

structed model – two first key steps towards MBRL-based 

QD tuning – by using a pre-measured charge stability dia-

gram. 

2. Learning system 

Reinforcement learning (RL) is an area of machine learn-

ing concerned with behavior within a certain environment. In 

a RL framework, the “agent” (i.e., the learning system) inter-

acts with the “environment” (i.e., a QD device in our case) 

and learns the “action” that maximizes “reward” obtained 

from the environment. Figure 1 shows our MBRL system. It 

consists of the following four major steps: (i) the agent 

measures a small charge stability diagram (red square in Fig. 

1) that partially characterizes the QD and obtains its corre-

sponding reward; (ii) the agent updates the construction of 

environment model based on the measurement results and the 

rewards; (iii) the agent learns the relation between actions and 

rewards in the constructed environment model many times, 

which is faster than in non-MBRL systems because in MBRL 

systems the agent does not interact with the environment it-

self through time-consuming measurements at this step; (iv) 

the agent determines which area will be measured in the next 

action to get higher reward based on the current learning sit-

uation. This cycle of four steps is repeated 5 × 106 times. 

We employ a neural-network reinforcement learning frame-

work, “DreamerV2,” as the algorithm for our agent. It is de-

veloped by DeepMind and outperforms the top single-GPU 

agents like Rainbow and IQN [3]. In this work, the task of the 

agent is to tune a multi-dot device to a single-QD state. For 

proof-of-concept of MBRL auto-tuning, we use a pre-meas-

ured wide-range charge stability diagram as environment for 

simplicity. It takes a couple of days to complete the entire 

learning cycle on a computer with a single GPU (RTX 2070 

SUPER, NVIDIA). 

 

 
Fig. 1 Learning system. At the beginning of the cycle, the agent per-

forms local characterization of the QD (red square). Next, reward is 

determined by image classification using CNN. Agent learns from 

measurement result and reward. Finally, the agent moves in the 

charge stability diagram to get more reward from the current learn-

ing situation, which corresponds to tuning of the gate voltages. 
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3. Reward determination by image classification 

In RL, reward plays an important role because the agent 

aims to maximize it and decides its action based on the reward 

predictions. In contrast to video games like Atari [4], where 

environment outputs a score that plays the role of reward, in 

QD measurements, rewards are not output per se. In order to 

evaluate the reward, we use image classification with convo-

lutional neural network (CNN). In QD measurements, we 

know what kind of patterns in a stability diagram is expected 

for single QD characteristic (stripes with a negative slope); 

therefore, we calculate the reward based on the similarity to 
computer-generated “target patterns”. We trained CNN with 

supervised learning for the classification task with the target 

pattern dataset (5000 images) and CIFAR-10 as dummy da-

taset (5000 images) [5]. These datasets are divided into train-

ing dataset (7000 images) and test dataset (3000 images). The 

training dataset is used for training the CNN, and the test da-

taset is used for evaluation only. As shown in Fig. 2, trained 

CNN achieved 99% accuracy with the test dataset. We use 

this trained CNN for the automatic reward determination in 

the MBRL system. The CNN gives the agent a base reward 

proportional to its confidence level (between 0 and 1) that the 

measured result has an expected characteristic. Additionally, 

a reward of +100 points is given upon reaching the goal, while 

a penalty of -100 points is issued when the gate voltages ex-

ceed the pre-determined limits. 

 

 
Fig. 2 Learning result of CNN with supervised learning for the clas-

sification task of whether or not a device is in a single QD region. 

Training and test data have 7000 and 3000 images, respectively. All 

images in the datasets are used in each epoch. 
 

4. Result 

Now the agent is ready to construct the environment 

model and learn from it. As an initial investigation of the fea-

sibility of MBRL-based QD tuning, we perform two types of 

tests. First, we evaluate the constructed environment model 

by checking its reward prediction (Fig. 3). In this evaluation, 

the agent initially starts measurements at a given condition 

and then changes the measurement position, looking for bet-

ter rewards. To decide the next action, the agent predicts re-

wards around the present measurement position. Figure 3 

shows the predicted reward averaged over 1000 runs. Areas 

with high predicted rewards are roughly consistent with the 

single QD region identified by human eyes. This suggests that 

a proper environment model is constructed. 

Second, we examine the learning in the environment 

model. Figure 4 (a) shows the episode reward, that is, the cu-

mulative reward of each run. As learning progresses, the epi-

sode reward acquired by the agent increases and saturates at 

100, meaning that the goal is regularly achieved. In the con-

trol experiment with random action selection, this value is 

much lower (~-70). The trajectories on the charge stability 

diagram during auto-tuning (Fig. 4 (b)) are reasonable in the 

sense that they smoothly tend towards the target region with-

out significant detour. We note that the tuning is efficient, 

with the average number of measurements in these runs 

roughly 23 times (corresponding to ~3 minutes when con-

verted into lab time). These results indicate that the agent was 

able to learn behavior in the environment model. 

 
Fig. 3 Predicted rewards of the 

environment model plotted on 

top of the stability diagram. 

Reward prediction is output 

only in areas where the agent 

has passed. Red dashed square 

indicates the single QD region 

identified by human eyes.

 
Fig. 4 (a) Evolution of episode reward. Red and black traces are for 

the agent and random action selection, respectively. (b) The agent’s 

measurement trajectories on the charge stability diagram. The tra-

jectories of 50 runs are shown.  
 

5. Conclusions 

We applied MBRL to the task of auto-tuning of a QD de-

vice to the single-QD region and investigated the applicabil-

ity of MBRL in QD measurements. The determination of re-

ward was automated by image classification using CNN. The 

results suggest that an appropriate environment model was 

constructed and that the agent successfully learned in the en-

vironment model. These are the first key steps towards 

MBRL-based QD tuning and support prospects of MBRL for 

more general QD auto-tuning technique. 
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