2025 年郡山大会プログラム(10 月 30 日・午前)

A 会場(2F・メイフェア/チェルシー)	B 会場(2F・福寿)	C 会場 (3F·右近)
司会 峯 真也氏(産業技術総合研究所) (9:30~10:30) 1A01(9:30~9:45)Boudouard 反応に対する酸化ニッケル触媒の活性 (北見工大1)〇鈴木雄大1, 城村優利1, 岡崎文保1, 坂上寛敏1 1A02(9:45~10:00)Boudouard 反応に対する酸化鉄触媒の活性 (北見工大1)〇城村優利1, 鈴木雄大1, 岡崎文保1, 坂上寛敏1 1A03(10:00~10:15)メタン燃焼触媒のデータ駆動型開発 (北海道大1)〇田島大地1, 陳 鐸天1, 安齊亮彦1, 清水研一1, 鳥屋尾 隆1 1A04(10:15~10:30)ハイドロガーネット前駆体から合成した鉄系ペロブスカイト型酸化物を用いた N2O 分解 (北海道大1)〇大井涼平1, 安齋潤一郎1, 神谷裕一1, 大友亮一1	司会 和田 透氏(北陸先端科学技術大学院大学) (9:30~10:30) 1B01(9:30~9:45)ケチミド配位ハーフチタノセン触媒によるエチレンと環状オレフィンとの共重合 (都立大1, 乙卯研²)○川津美菜穂1, 野村琴広1, 柴田真太郎² 1B02(9:45~10:00)ケチミド配位ハーフチタノセン触媒による環状オレフィン系共重合体の合成・特性解析 (都立大1)○澁木麻優1, 野村琴広1 1B03(10:00~10:15)Effect of montmorillonite clay treated acid support for a zirconocene/MAO catalyst on ethylene polymerization behaviors (Tokyo Metropolitan Univ.¹, Chulalongkorn Univ.²) ○P. Tumawong², K. Nomura¹, B. Jongsomjit² 1B04(10:15~10:30)長鎖分岐ポリエチレン製造用の非対称型メタロセン錯体開発 (日本ポリケム¹)○櫻木 努¹, 石濱由之¹, 山田芳佳¹, 飯場顕司¹	司会 冨重圭一氏(東北大学)(9:30~10:00) 1C01(9:30~9:45)石油学会の新しいあり方検討状況 (鳥取大¹,早稲田大²)○片田直伸¹,関根 泰² 1C02(9:45~10:00)日本の 2050 年カーボンニュートラル実現に向けたシナリオ分析 (産総研¹)○小澤暁人¹,Gonocruz,R.A.¹,工藤祐揮¹ 体憩(10:00~10:15) 司会 松下康一氏(ENEOS)(10:15~11:15) 1C03(10:15~10:45)【招待】製油所の脱化石化へ向かう先制的ライフサイクル思考 (東京大¹,三菱 UFJ R&C²)○菊池康紀¹,黒田裕章²
休憩(10:30~10:45)	休憩(10:30~10:45)	
司会 荻原仁志氏(埼玉大学) (10:45~11:30) 1A05(10:45~11:00)トランジェント型 2 step 触媒システムによる NTA プロセスの検討 (東京大¹,産総研²)○小倉 賢¹,畑中 耀¹,大西武士¹,眞中雄一²,難波哲哉² 1A06(11:00~11:15)Comparative study between Cu/CeO₂ and CuMnCe oxide catalysts for low temperature nitrogen oxide to ammonia reaction (AIST¹, Science Tokyo²)○C. Chaudhari¹, Y. Manaka¹², T. Namba¹ 1A07(11:15~11:30)還元剤の非定常供給操作下における NO から NH₃への変換プロセスの反応挙動解析 (科学大¹,産総研²)○H. Hwang¹, T. Wijakmatee¹,松本秀行¹,多湖輝興¹,眞中雄一²,難波哲哉²	司会 野村琴広氏 (東京都立大学) (10:45~11:45) 1B05(10:45 ~ 11:00) データ 駆 動 型 ア プ ローチ に 基 づく Ziegler-Natta 触媒の開発 (北陸先端大 ¹, Dutch Polymer Inst.²)○谷池俊明 ¹.², Khoshsefat, M.¹.², Chammingkwan, P.¹.² 1B06(11:00~11:15)バイオマス由来化合物を原料とした複合触媒系を用いた可視光駆動型生分解性プラスチック前駆体合成 (大阪公大 ¹)○山田恭佑 ¹, 天尾 豊 ¹ 1B07(11:15~11:30)潤滑油基油合成を志向したオレフィンオリゴマー化と得られた基油の基礎物性 (ENEOS¹)○相田冬樹 ¹, 田川一生 ¹ 1B08(11:30~11:45)SAXS および光散乱によるメチルアルミノキサンの高次構造の解明 (北陸先端大 ¹)○和田 透 ¹, 谷池俊明 ¹	1C04(10:45 ~ 11:00)Hydrodesulfurization reaction of dibenzothiophene under the coexistence of oxygenated compounds (Tokyo Univ. Agri. Tech.¹)○M. Peng¹, D. Chen¹, K. Kamiya¹, E. Qian¹ 1C05(11:00~11:15)減圧残油とバイオオイルの共熱分解効果 (東北大¹, NRIA of Indonesia², JPEC³, LECO ジャパン⁴)○熊谷将吾¹, Kusumawati, M. B.¹², Borjigin, S.¹, 鈴木昭雄³, 樺島文恵⁴, 櫻井昌文⁴, 齋藤優子¹, 吉岡敏明¹

2025 年郡山大会プログラム(10 月 30 日・午前)

D 会場 (3F・桜)	E 会場(3F・中央)	F 会場 (3F・橘)
○福原長寿 ¹ 、中澤 優 ¹ 、山田祐生 ¹ 、赤間 弘 ¹ 、渡部 綾 ¹ 1D04(10:15~10:30)Pr ドープ CeO ₂ を用いたケミカルループによる 逆水性ガスシフト反応 (早稲田大 ¹ 、ENEOS HD ² 、 ENEOS ³)○市塚賢慈 ¹ 、比護拓馬 ¹ 、七種紘規 ¹ 、石崎柊平 ¹ 、 柿原聡太 ¹ 、矢山由洋 ² 、平野佑一朗 ³ 、関根 泰 ¹ 「たり2(10:45~11:30) 日D05(10:45~11:00)酸化物担持金属触媒による CO ₂ を用いた 2·(1·フェニルビニル)フェノールのカルボキシ化反応 (都立大 ¹ 、大阪公大 ² 、北海道大 ³ 、九州大 ⁴)○北家愛子 ¹ 、 中山晶皓 ⁴ 、荒田晃生 ¹ 、坂口紀史 ³ 、村山 徹 ³ 、嶋田哲也 ¹ 、 高木慎介 ¹ 、石田玉青 ² (10:10~ 1E01(10 紹介 (京本 ² 1E03(10 測定の (富士 ² 1E04(11 ンク洗 (ENEC 1E05(11 程短縦	石油 ¹)○林田政徳 ¹ 1:00~11:15)原油タンク開放工程短縮に向けた検討—原油タ た浄に加温ケミカル洗浄導入による工程短縮— (OS¹)○日登圭宣 ¹	司会 多田昌平氏(北海道大学)(9:30~10:30) 1F01(9:30~9:45)フッ素を用いるハフニウム含有ゼオライトのポスト合成法の開発 (北海道大り○田中風花¹、中村太一¹、神谷裕一¹、大友亮一¹ 1F02(9:45~10:00)機械学習を用いたゼオライトの合成条件と構造の関連性の可視化と解釈 (北九大り○石田陽希¹、山本勝俊¹ 1F03(10:00~10:15)軟 X 線発光分光によるゼオライトネットワークの 3 次元構造解析 (東北大¹、QST²)○二宮 翔¹、板本航輝¹、Ugalino, R.²、殷 忠¹、西堀麻衣子¹ 1F04(10:15~10:30)高温水蒸気共存条件下における Ni@S·1 触媒のメタン改質反応に対する活性および構造安定性の評価(科学大¹、京都大²)○名倉 諒¹、黄 麗玲¹、岸 賢吾¹、木村健太郎¹、松本秀行¹、藤墳大裕²、多湖輝興¹ 休憩(10:30~10:45) 司会 三浦大樹氏(東京都立大学)(10:45~11:45) 1F05(10:45~11:00)メカノケミカル法による複合酸化物触媒の調製(山形大¹、三菱ケミカル²)○木俣光正¹、三上貴裕¹、牛木涼友²、岡田篤樹² 1F06(11:00~11:15)粒径を制御した層状チタンニオブ酸とセルロースを含む水からの半導体光触媒による効率的水素生成(秋田大¹、早稲田大²)○齊藤寛治¹²、秋山隼人¹、田家夏希¹、小笠原正剛¹、加藤純雄¹ 1F07(11:15~11:30)Alドープ MgO における水素スピルオーバーの発現と CO₂水素化反応への応用(大阪大¹)○後 和希¹、木俵拓海¹、森 浩亮¹ 1F08(11:30~11:45)ヘテロボリ酸担持触媒を用いたマイクロ波加熱下でのエタノール脱水反応(九州大¹)○永長久寛¹、Ni、Z.¹

2025 年郡山大会プログラム(10 月 30 日・午後)

K. Imamura ¹ , N. Tsunoji ² , A. Onda ¹ 1A10(13:30~13:45)Synthesis of polyhydric C2 and C4 alcohols from glucose via retro-aldolization followed by in situ hydrogenation (Hokkaido Univ. ¹)OS. S. Al Hajri ¹ , R. Osuga ¹ , S. Suganuma ¹ , K. Nakajima ¹ 1A11(13:45~14:00)Depolymerization of PET with alcohol by homogeneous iron catalysts (Tokyo Metropolitan Univ. ¹) OK. Jaiyen ¹ , Y. Jiang ¹ , M. M. Abdellatif ¹ , K. Nomura ¹ Break(14:00~14:15) Chair Dr. H. Fujitsuka(Kyoto Univ.)(14:15~15:15) 1A12(14:15~14:45) [Invited] Development of high-performance zeolite catalysts guided by the molecular design of organic	B 会場(2F・福寿)	C 会場 (3F・右近) 司会 熊谷将吾氏(東北大学)(13:00~14:00) 1C06(13:00~13:15)バイオマス由来油の成分分析方法の検討 (JPEC¹)○阿部美穂子¹, 松本幸太郎¹, 佐瀬 潔¹, 栗原 功¹ 1C07(13:15~13:30)接触分解プロセスでのバイオマスコプロセッシングにおける生成物組成を予測する機械学習モデルの構築
1A08(13:00 ~ 13:15)Continuous production of bio-based phenol from cashew agricultural waste through zeolite catalyzed dealkylation (Hokkaido Univ.¹) O J. Wiesfeld¹, K. Iriba¹, Y. Yamaguchi¹, R. Osuga¹, S. Suganuma¹, K. Nakajima¹ 1A09(13:15 ~ 13:30)Production of 5-hydroxymethylfurfural and levulinic acid from crystalline cellulose using zeolite as catalyst (Kochi Univ.¹, Tottori Univ.²) O N. Takeshita¹, K. Imamura¹, N. Tsunoji², A. Onda¹ 1A10(13:30 ~ 13:45)Synthesis of polyhydric C2 and C4 alcohols from glucose via retro-aldolization followed by in situ hydrogenation (Hokkaido Univ.¹) O S. S. Al Hajri¹, R. Osuga¹, S. Suganuma¹, K. Nakajima¹ 1A11(13:45 ~ 14:00)Depolymerization of PET with alcohol by homogeneous iron catalysts (Tokyo Metropolitan Univ.¹) O K. Jaiyen¹, Y. Jiang¹, M. M. Abdellatif¹, K. Nomura¹ 1 Break(14:00 ~ 14:15) Chair Dr. H. Fujitsuka(Kyoto Univ.)(14:15 ~ 15:15) 1A12(14:15 ~ 14:45) [Invited] Development of high-performance zeolite catalysts guided by the molecular design of organic structure-directing agents		1C06(13:00~13:15)バイオマス由来油の成分分析方法の検討 (JPEC¹)○阿部美穂子¹,松本幸太郎¹,佐瀬 潔¹,栗原 功¹ 1C07(13:15~13:30)接触分解プロセスでのバイオマスコプロセッシ ングにおける生成物組成を予測する機械学習モデルの構築
1A13(14:45~15:15) [Invited] Engineering porous materials for themocatalytic application	司会 村山 徹氏(北海道大学) (13:45~14:15) 1B09(13:45~14:00)タイヤ熱分解油の水素化処理触媒評価(ENEOS¹)○富室洋介¹, 可児正也¹ 1B10(14:00~14:15)SSZ-13 ナノ粒子を用いた LDPE 分解反応の評価 (大阪大¹)○村田佳樹¹, 三宅浩史¹, 内田幸明¹, 西山憲和¹ 体憩(14:15~14:30) 司会 嶋田五百里氏(信州大学)(14:30~15:15) 1B11(14:30~14:45)Ru/C 電極触媒を用いたシクロヘキセンの酸化開裂によるアジビン酸の合成 (埼玉大¹)○上林 葵¹, 中澤初音¹, 鈴木崇哲¹, 黒川秀樹¹, 荻原仁志¹ 1B12(14:45~15:00)膜/電極接合体を用いた C3 炭化水素の気相電解酸化における貴金属触媒の影響 (埼玉大¹)○安田七海¹, 今野茉理奈¹, 鈴木崇哲¹, 黒川秀樹¹, 荻原仁志¹ 1B13(15:00~15:15)金ナノ粒子触媒の酸化物ナノシートによる表面修飾とその CO 酸化触媒活性 (都立大¹, 九州大², 北海道大³, 大阪公大⁴)○浜田菜結¹, 中山晶皓², 坂口紀史³, 村山 徹³, 嶋田哲也¹, 高木慎介¹, 石田玉青⁴	(信州大1)○嶋田五百里1, 児玉侑平1 1C08(13:30~13:45)機械学習に基づく処理原油成分情報のリアルタイム予測モデルの開発(最終)成分予測モデルの開発と原油物性の推算への応用 (JPEC¹)○中河陽太1, 松本幸太郎1, 栗原 功1 1C09(13:45~14:00)原油成分情報を用いた混合安定性予測手法の検討(JPEC¹)○松本幸太郎1,中河陽太1,栗原 功1 休憩(14:00~14:15) 司会 藤井重孝氏(千代田化工建設)(14:15~15:00) 1C10(14:15~14:30)重質炭化水素と無機物の混合物加熱によるファウリング物質の形成 (産総研1,千葉大2,JPEC³,出光4)○麓 恵里1,佐藤信也1,柿沼敏弘1,松澤貞夫1,森本正人1,森田 剛2,佐瀬潔³,田中隆三 3-4,鈴木昭雄³ 1C11(14:30~14:45)流動接触分解装置の熱交換器のファウリング物質の解析(JPEC¹,産総研2,コスモ石油3)○鈴木昭雄1,佐瀬潔¹,栗原 功1,麓 恵里2,森本正人2,大野琢也3,萩原和彦³ 1C12(14:45~15:00)小角散乱法による VGO とバイオ燃料 FAME の混合凝集状態の解析(千葉大1,産総研2,JPEC³,出光4)○森田 剛1,麓 恵里2,森本正人2,佐瀬潔³,田中隆三 3-4,鈴木昭雄3
Break (15:15 \sim 15:30) Chair Dr. M. Yabushita (Tohoku Univ.)(15:30 \sim 16:30) 1A14(15:30 \sim 16:00) [Invited] Integrated catalyst and reactor design for sustainable CO ₂ and CH ₄ utilization (Pukyong National Univ.¹) \bigcirc S. Kim¹ 1A15(16:00 \sim 16:30) [Invited] Optimized zeolite beta and open-batch reactor design for enhanced cracking and hydrocracking of polyolefin waste (Seoul National Univ.¹) \bigcirc J. H. Kang¹, H. Kang¹, T. H. Lee¹	司会 相田冬樹氏 (ENEOS) (15:30~16:30) 1B14(15:30~15:45)環状オレフィン系共重合体における網羅的構造 —物性相関解析に基づく機能性材料探索 (NIMS¹, 都立大²)○稲津美紀¹, 内藤昌信¹, 野村琴広² 1B15(15:45~16:00)ポリエステルのアミンによる解重合とアップサイクル手法の開発 (都立大¹)○豊場純帆¹, 野村琴広¹ 1B16(16:00~16:15)反応射出成形法によるジシクロペンタジエン成型樹脂の製造に適するタングステン錯体触媒系の開発 (岡山大¹, 広島大², 産総研³)押木俊之¹, ○福真海¹, 佐野航介¹, 中山祐正², 田中真司³ 1B17(16:15~16:30) (Arylimido)niobium(V)-alkylidene N'heterocyclic carbene complexes for ring-opening metathesis polymerization of cyclic olefins (Tokyo Metropolitan Univ.¹) ○P. Loekukot¹, K. Chatchaipaiboon¹, K. Nomura¹	(15:15~15:45)【市民講座1】一期一会 レイモミ小野フラスクール ダンサー・教師 Kamalei ひろえ 休憩 (15:45~16:00) (16:00~16:30)【市民講座2】再生可能エネルギー 産業技術総合研究所 福島再生可能エネルギー研究所 (FREA) 所長 古谷博秀 (16:45~16:50)会長挨拶 (16:50~17:00)設備維持管理士育成優良事業所表彰式 (17:15~18:15)【特別講演】演題未定

2025 年郡山大会プログラム(10 月 30 日・午後)

D 会場 (3F・桜)	E 会場(3F・中央)	F 会場(3F・橘)
司会 秋本 淳氏(エネルギー総合工学研究所) (13:00~14:15) 1D08(13:00~13:45) 【招待】国内のプラスチック資源循環の現状 (プラ循環利用協会¹)○冨田 斉¹ 1D09(13:45~14:00)固体酸触媒を用いる長鎖アルカンによるベンゼンのアルキル化反応 (横浜国大¹)○石川翔一朗¹,長谷川慎吾¹,本倉 健¹ 1D10(14:00~14:15)HMFI ゼオライト上のポリプロピレン水素化分解反応機構のオペランド解析 (北海道大¹)○安藤有里子¹,安齊亮彦¹,鳥屋尾隆¹,清水研一¹	司会 松島 立氏(出光興産)(13:00~14:00) 1E06(13:00~13:15)外面腐食対応/下地処理等の施工品質向上 (出光 ¹)○荒井拓也 ¹ 1E07(13:15~13:30)キャンドモータポンプ冷却水ジャケットの防食 塗装寿命延長検討 (出光 ¹)○遠藤寛幸 ¹ 1E08(13:30~13:45)ナットランナー使用によるショルダープラグ締 結管理 (昭和四日市石油 ¹)○原田 論 ¹ 1E09(13:45~14:00)設備保全におけるねじ締結体の残存軸力予測およびゆるみ寿命推定法とその見える化に関する一考察 (都立大 ¹ , タクスト ²)○晴山蒼一 ¹ , 山本晋也 ²	司会 角 茂氏(千代田化工建設)(13:30~14:15) 1F09(13:30~14:15)【招待】福島県の再生可能エネルギー導入状況 とバイオマス利用技術の展望 (EA ふくしま 1)○坂西欣也 1
休憩(14:15~14:30)	休憩(14:00~14:15)	休憩(14:15~14:30)
司会 片田直伸氏(鳥取大学)(14:30~15:30) 1D11(14:30~14:45)異種プラスチックを含む LDPE 接触分解における触媒の酸量と被毒の関係 (室蘭工大¹)○村崎友香¹,上道芳夫¹,神田康晴¹ 1D12(14:45~15:00)ゼオライト外表面の酸点がポリオレフィン分解に果たす役割 (大阪大¹)○中井流雅¹,三宅浩史¹,内田幸明¹,西山憲和¹ 1D13(15:00~15:15)テトラリン溶媒中における PE と PP 分解反応に対するアルカリ処理したゼオライト Betaの触媒特性(早稲田大¹)○神木大輝¹,加茂 徹¹,酒井 求¹,松方正彦¹ 1D14(15:15~15:30)炭化水素溶媒中でのゼオライトによるポリプロピレン分解におけるメソ孔の効果 (早稲田大¹)○三浦健生¹,酒井 求¹,加茂 徹¹,松方正彦¹	司会 鵜澤勝義氏 (コスモ石油) (14:15~15:15) 1E10(14:15~14:30)AI 技術によるプロセス安全管理技術の高度化 (JPEC¹)○内田 充¹, 野崎隆生¹, 槇原勝行¹ 1E11(14:30~14:45)電子操業日誌 PlantLogMeister (PLM) とプロセスデータベース PLANETMEISTER (PMD) の紹介 (TMEIC¹)○久保田 馨¹ 1E12(14:45~15:00)AI を用いたオンライン予兆診断による設備の信頼性向上 (コスモ石油¹)久保田真実¹, ○福田美唯¹ 1E13(15:00 ~ 15:15)GEV APM-using AI for inspection & monitoring (GE Vernova¹)○O. Atillo¹ 休憩(15:15~15:30)	司会 小倉 賢氏(東京大学)(14:30~15:30) 1F10(14:30~14:45)海藻多糖ウルバンの自己触媒反応による単糖生成 (高知大¹)○國定健人¹,清水優花¹,今村和也¹,恩田歩武¹ 1F11(14:45~15:00)赤外分光法を用いた溶媒中の固体触媒の酸性質評価 (北海道大¹)○大須賀遼太¹,石泉¹,菅沼学史¹,中島清隆¹ 1F12(15:00~15:15)HfO₂-SiO₂ 触媒を用いたエタノールとアセトアルデヒドからのブタジエン生成における触媒作用の解析 (日本ゼオン¹,産総研²)○秋山草多¹,岩船光鉱¹,黒江元紀¹,橋本貞治¹,中村功²,藤谷忠博² 1F13(15:15~15:30)Pt担持耐水性ルイス酸・塩基触媒を用いたセルロースから C3・C4 炭化水素への転換 (早稲田大¹,高知大²,アストモスエネ³)○松本実織¹,細川実紘¹,小河脩平²,恩田歩武²,浜口達弥³,齋木貴史³,関根泰¹
休憩(15:30~15:45)	司会 深田敦之氏(太陽石油)(15:30~16:30)	休憩(15:30~15:45)
司会 永松茂樹氏 (JEPLAN) (15:45~16:30) 1D15(15:45~16:00) 試験管内人工代謝反応によるポリプロピレン分解の効率化 (福島大 ¹)○星 斎槻 ¹, 趙 金暢 ¹, 千葉剛大 ¹, 杉森大助 ¹ 1D16(16:00~16:15)ブドウ虫腸内細菌 Serratia sp. S1株由来ポリエチレン分解酵素の精製および酵素遺伝子推定 (福島大 ¹)○星 淳志 ¹, 千葉剛大 ¹, 杉森大助 ¹ 1D17(16:15~16:30)PVDC 分解菌の探索および分解酵素の機能解析 (福島大 ¹, 岩手大 ²)千葉剛大 ¹, 林田宗紀 ², 山田美和 ², ○ ******* 世 ¹	1E14(15:30~15:45)データ統合基盤と AI エージェントを活用した DX 推進と予兆保全 (Cognite¹)○丸山ひかる ¹ 1E15(15:45~16:00)デジタルツイン基盤導入の取り組み (ENEOS¹)是永真泰 ¹ , ○城野太希 ¹ 1E16(16:00~16:15)デジタルツイン分析を用いた予知保全システム の回転機導入事例 (コスモ石油 ¹)○太刀川卓 ¹ 1E17(16:15~16:30)外面腐食管理の改善 (出光 ¹)○阿保佑馬 ¹	司会 大須賀遼太氏(北海道大学)(15:45~16:30) 1F14(15:45~16:00)末端官能基化バイオベースポリエステルの合成と物性への末端効果 (都立大1)○佐藤俊輔1,下山大輔1,野村琴広1 1F15(16:00~16:15)非環式ジエンメタセシス重合による植物由来の架橋ポリエステルとセルロースナノファイバーとの複合材料の合成(都立大1,大阪産技研2)○井上絢渚1,松本祐一1,M.M.Abdellatif1,平野 寛2,東青史2,野村琴広1 1F16(16:15~16:30)酵素を利用したメタン/メタノール変換

○杉森大助1

(科学大1)○蒲池利章1, 伊藤栄紘1, 能戸湧太1

2025 年郡山大会プログラム 10 月 30 日・午後)

0.045.405.4.45	
G 会場 (3F・左近)	
司会 野村琴広氏 (東京都立大学) (13:30~14:15) 1G01(13:30~14:15)【招待】高分子材料開発を加速するセルフ・ドライビングラボ (NIMS ¹)○内藤昌信 ¹	
司会 押木俊之氏(岡山大学)(14:15~15:00) 1G02(14:15~15:00)【招待】酸・塩基フリー条件下でのポリエステルの定量的なケミカルリサイクル・アップサイクル (都立大1)○野村琴広1	
休憩(15:00~15:15)	
司会 天尾 豊氏(大阪公立大学) (15:15~16:30) 1G03(15:15~15:30)スパイラル形構造体触媒の Swirl flow 効果がもたらす高速 CO2処理特性 (静岡大り)○赤間 弘 1, 植田祥太1,美濃一秀 1, 樋脇亘志 1, 渡部 綾 1, 福原長寿 1 1G04(15:30~15:45)カーボンリサイクルを志向した化成品選択合成技術の研究開発 (川崎重工 1, 大阪大 2)○谷山教幸 1, 鬼頭慎太郎 1, 米田滉司 1, 藁谷友佑 1, 三宅浩史 2, 西山憲和 2 1G05(15:45~16:00)担持 AuNi 合金, Pd ナノ粒子触媒を用いたエチレンへの CO2挿入反応 (都立大 1, 九州大 2, 北海道大 3, 大阪公大 4)○喬 立先 1, 荒田晃生 1, 中山晶皓 2, 坂口紀史 3, 村山 徹 3, 嶋田哲也 1, 高木慎介 1, 石田玉青 1・4 1G06(16:00~16:15)複合酸化物触媒を用いた炭素系廃棄物のBoudouard 反応による資源化プロセスの検討 (九州大 1)○二宮徹次 1, 北條 元 1, 永長久寛 1 1G07(16:15~16:30)Al ₂ O ₃ 担持 CuMgFe 型ハイドロタルサイト由来触媒を用いた CO ₂ の直接 FT 合成 (科学大 1)○中村 拳 1, Calangi, J.1, Chin, T. C.1, 多湖輝興 1, 木村健太郎 1	

2025 年郡山大会プログラム(10 月 31日・午前)

A 会場(2F・メイフェア/チェルシー)	B 会場(2F・福寿)	C 会場(3F・右近)
Chair Dr. K. Tashiro(Shizuoka Univ.)(9:00~10:00) 2A01(9:00~9:15)(Imido)vanadium complexes containing chelate 2-(anilidemethyl)pyridine ligands as efficient ethylene dimerization catalysts (Tokyo Metropolitan Univ.¹)○S. Zhang¹, K. Nomura¹ 2A02(9:15~9:30)Efficient synthesis of cyclic olefin copolymers with high glass transition temperatures by nonbridged half-titanocene catalysts (Tokyo Metropolitan Univ.¹, Tech. Univ. Braunschweig²) ○K. Jantawan¹, M. Tamm², K. Nomura¹ 2A03(9:30 ~ 9:45)One·pot synthesis of asymmetric organic carbonates from carbon dioxide and two alcohols with CeO₂ catalyst and 2-cyanopyridine dehydrant (Tohoku Univ.¹, Kunming Univ.²)○Z. Li¹, Y. Li¹.², M. Yabushita¹, Y. Nakagawa¹, K. Tomishige¹ 2A04(9:45~10:00)CO₂ capture and selective hydrogenation to CO over Ag and K co-loaded Al₂O₃under mild and simulated realistic conditions (Kogakuin Univ.¹, JST-PRESTO²) ○S. Shukuya¹, N. Namiki¹, Z. Maeno¹.²	司会 幾島賢治氏 (IHテクノロジー) (9:15~10:15) 2B01(9:15~9:45)【招待】高精細な映像と遠隔地のリモート映像を組合わせた製油所における安全保全監視システムの開発 (水銀除去装置への応用) (アストロデザイン¹)○古山 悟¹ 2B02(9:45~10:00)水銀吸着に及ぼす吸着剤表面官能基の効果のDFT計算による評価 (愛媛大¹, IHテクノロジー²)○藤崎真広¹, 高橋昂佑¹, 杉野舞佳¹, 山浦弘之¹, 山口修平¹, 幾島嘉浩², 八尋秀典¹ 2B03(10:00~10:15)チオール除去に有効な吸着剤の銅担持条件の検討 (愛媛大¹)○山浦弘之¹, 山口修平¹, 八尋秀典¹	司会 神田康晴氏 (室蘭工業大学) (9:15~10:00) 2C01(9:15~9:30)Y-ゼオライト溶解ゲル骨格補強法を用いて調製した階層構造触媒による LDPE の接触分解反応 (三重大¹, 三重県工業研²)〇土井裕二郎¹, 光岡駿真¹, 田中柊真¹, 中嶋梨乃¹, 松浦真也², 橋本忠範¹, 石原 篤¹ 2C02(9:30~9:45)Y-ゼオライト·Al ₂ O ₃ 複合担体担持 Pt 触媒を用いたオレイン酸メチルの水素化分解反応による JET 燃料製造 (三重大¹)○財津秀章¹, 橋本忠範¹, 石原 篤¹ 2C03(9:45~10:00)中間留分選択性の高い新規水素化分解触媒の開発 (日揮触媒化成¹, ARAMCO²)〇中島一樹¹, 松元雄介¹, 関 浩幸¹, Guanghui, Z.², Hodgkins, R. P.², Bahhar, M. Z.², Mulla, F. M.²
Break(10:00~10:15)	休憩(10:15~10:30)	司会 石原 篤氏(三重大学)(10:15~11:30)
Chair Dr. T. Takayama(NAIST)(10:15~11:30) 2A05(10:15~10:45) [Invited] Design of catalysts for efficient CO₂ conversion (Kyoto Univ.¹)○S. Iguchi¹ 2A06(10:45 ~ 11:00)Exploring the amine impregnated CO₂ adsorbent suitable for direct air capture (Tottori Univ.¹)○N. Tsunoji¹ 2A07(11:00~11:15)Synthesis of Ta−Nb heteropolyoxometalates and their catalytic application in CO₂ fixation (Tokyo Metropolitan Univ.¹)○N. Panichakul¹, S. Kikkawa¹, K. Kikuchi¹, H. Kawasoko¹, S. Yamazoe¹ 2A08(11:15~11:30)BTX production via selective hydrotreatment of polycyclic aromatic hydrocarbons (Tokyo Univ. Agri. Tech.¹, Maruzen Petrochemical²)○Q. Zuo¹, E. Qian¹, K. Kamiya¹, M. Peng¹, Y. Saga²	司会 山浦弘之氏(愛媛大学)(10:30~11:15) 2B04(10:30~10:45)水銀除去装置の監視設備の開発 (IH テクノ ¹ 、愛媛大 ²)○幾島賢治 ¹ 、八尋秀典 ² 、幾島將貴 ¹ 2B05(10:45~11:00)中国における水銀除去への関心 (華和商事 ¹ 、北京華和協力商貿 ² 、IH テクノ ³)○田邉康大 ¹ 、田中 毅 ¹ 、朱 長友 ² 、幾島賢治 ³ 、幾島將貴 ³ 2B06(11:00~11:15)山香温泉からのリチウム回収について (レアメタル技研 ¹ 、山香温泉研究会 ²)○菅 伸治 ¹ 、山縣亮介 ¹ 、吉塚和治 ¹ 、杉野 光 ² 、阿部素也 ²	2C04(10:15~10:30)亜鉛-チタンまたは亜鉛-ホウ素添加直接脱硫触媒におけるリン添加量の影響 (コスモ石油 1)○長谷山翔真 1, 鈴木伸也 1, 森永正隆 1 2C05(10:30~10:45)植物油混合原料油の水素化脱硫反応と触媒への影響 (日揮触媒化成 1)○長谷川博紀 1, 重岡賢幸 1, 酒井伸吾 1, 松元雄介 1 2C06(10:45~11:00)リン化ロジウム触媒による 1-ヘキセンおよびシクロヘキセンを含有したベンゾチオフェンの選択的水素化反応(室蘭工大 1)○神田康晴 1, 宮本亜未 1, 阿部菜摘 1 2C07(11:00~11:15)黒鉛層間における硫化モリブデン粒子の挿入構造(岩手大 1, 北海道大 2, 島根大 3)○白井誠之 1, 算用子晃哉 1, 坂口紀史 2, 久保田岳志 3 2C08(11:15~11:30)黒鉛層間金属硫化物触媒の積層構造変化と脱硫活性の関係 (島根大 1, 岩手大 2)橋本知憲 1, ○久保田岳志 1, 算用子晃哉 2, 白井誠之 2

2025 年郡山大会プログラム(10 月 31日・午前)

D 会場 (3F・桜)	E 会場(3F・中央)	F 会場(3F・橘)
司会 渡部 綾氏(静岡大学)(9:15~10:30) 2D01(9:15~9:30)ゾル・ゲル法で調製した Cu-Al ₂ O ₃ -SiO ₂ 系触媒を用いた二酸化炭素の水素化によるジメチルエーテル直接合成(静岡大 ¹)○武石 薫 ¹ , 猪狩亘記 ¹ 2D02(9:30~9:45)担持金触媒を用いた CO ₂ 水素化によるメタノール合成一水素の活性化能とメタノール生成速度の相関に関する考察ー(都立大 ¹)○奥住雄一郎 ¹ , 中川拓海 ¹ , 三浦大樹 ¹ , 宍戸哲也 ¹ 2D03(9:45~10:00)Pt/MoO ₃ /TiO ₂ 触媒による CO ₂ の水素化を通じた低温メタノール合成 (都立大 ¹)○丁 渤桓 ¹ , 魏 増皓 ¹ ,	司会 岡本 悟氏 (ENEOS) (9:15~10:15) 2E01(9:15~9:30)海水熱交換器のインレットアタックの改善事例 (東亜石油 ¹)○野内雅史 ¹ 2E02(9:30~9:45)製油所における雷害メカニズムの検討と被害低減 に向けた対策 (富士石油 ¹)○樋口健太郎 ¹ 2E03(9:45~10:00)発電機固定子部分放電発生部位の評価による保 全方法の適正化 (出光 ¹)○小宮満明 ¹	司会 上谷高明氏 (INPEX) (9:15~10:15) 2F01(9:15~10:00) 【招待】 CO ₂ とバイオベース反応性増粘流体を用いた革新的岩石破砕技術 (東北大1)○渡邉則昭1
神谷悠聖 ¹ , 三浦大樹 ¹ , 宍戸哲也 ¹ 2D04(10:00~10:15)三成分触媒によるシリコン粉末を還元剤とする CO ₂ のギ酸への転換反応 (横浜国大 ¹ , 電源開発 ² , 産総研 ³)○本倉 健 ¹ , 谷村勇亮 ¹ ,	2E04(10:00~10:15)Q 法によるクリープ評価の適用とその効果 (出光¹)○中村優樹¹	2F02(10:00~10:15)地下資源開発における岩石亀裂の熱-水理-力学連成挙動 (産総研¹)○石橋琢也¹
長谷川慎吾 ¹ , 難波一夫 ² , 眞中雄一 ³ 2D05(10:15~10:30)Cu 触媒とモルデナイトのタンデム型触媒を用いた合成ガスからの酢酸メチル合成におけるモルデナイトへの金属イオン添加効果	休憩 (10:15~10:30)	休憩 (10:15~10:30)
(産総研¹)○志村勝也¹,中村 功¹,藤谷忠博¹ 休憩(10:30~10:45)	司会 小玉 秀氏(出光興産)(10:30~11:30) 2E05(10:30~10:45)三井 E&S のカーボンニュートラルに向けた取り組みの紹介	司会 伊原 賢氏(JOGMEC)(10:30~11:30) 2F03(10:30~10:45)未固結砂岩を対象とした Digital Rock Physics による検討
司会 森 浩亮氏(大阪大学)(10:45~11:45) 2D06(10:45~11:00)メタン直接改質反応―共沈法で調製した鉄-アルミナ系触媒の活性評価― (北見工大1)〇田代多希1,實崎颯太1,岡崎文保1,坂上寛敏1 2D07(11:00~11:15)メタン直接改質反応―活性炭担体に対する酸処理の影響― (北見工大1)〇野村尚義1,岡崎文保1,坂上寛敏1	(三井 E&S¹)○屋敷 渓¹ 2E06(10:45~11:00)膜と吸着を組み合わせたハイブリッド型 CO₂分離回収 (JFE エンジ¹)○奥山契一¹, 千葉健太郎¹ 2E07(11:00~11:15)SAF 製造装置における排水処理設備の排水処理プロセス検討 (出光¹)○中川貴裕¹ 2E08(11:15~11:30)屋外貯蔵タンクエリアへのドローン運用開始に	(INPEX¹)○高林克百¹ 2F04(10:45~11:00)新潟県柏崎地域を例とした CCS 事業における最適な土壌内 CO₂観測データ解析手法の検討 (INPEX¹, 九州大²)○河野昭博¹, 畔田慎太郎¹, 小林佑輝¹, 菅井裕一² 2F05(11:00~11:15)水素をトレーサーとした CCS における CO₂の漏えいモニタリング手法の検討 (九州大¹, INPEX²)○菅井裕一¹, 宮園 篤¹, 小林佑輝², 堀内侑樹², 河野昭博²
2D08(11:15~11:30)ZnFe ₂ O ₄ 系スピネル型酸化物とゼオライトによる CO ₂ からのタンデム型炭化水素合成(早稲田大¹)○森 弘毅¹, 酒井 求¹, 松方正彦¹ 2D09(11:30~11:45)半導体光電極/生体触媒複合系による二酸化炭素を原料とした高分子前駆体の合成(大阪公大¹)○前田侑輝¹, 天尾 豊¹	よる安全確保と点検の効率化事例の紹介 (ENEOS¹)○井上彰悟 ¹ , 柳本寛之 ¹ , 岡本 悟 ¹	2F06(11:15~11:30)CCS 坑井環境における CRA 油井管材料の局部 腐食評価 (INPEX¹)○砂場敏行 ¹, 水上裕貴 ¹

2025 年郡山大会プログラム(10 月 31日・午後)

A 会場 (2F・メイフェア/チェルシー)

Chair Dr. S. Yasumura (Univ. Tokyo) (13:00 \sim 13:45)

2A09(13:00~13:30)[Invited] Modeling heterogeneous catalysis by AI that integrates experimental and theoretical data (Hokkaido Univ.¹) \bigcirc R. Miyazaki¹

 $2A10(13:30 \sim 13:45) Development \ of \ AI-based \ techniques \ for extrapolating high-boiling-point components in petroleum residual fractions (Shizuoka Univ.¹, JPEC²)$

OY. Murakami¹, K. Matsumoto², H. Arai²

休憩(13:45~14:00)

司会 松本秀行氏(東京科学大学)(14:00~15:00)

2A11(14:00~14:30)【招待】『古くて新しい』速度論モデリングが 導く持続可能な化学プロセス創出 (東北大¹)○高橋 厚¹

2A12(14:30~14:45)機械学習による CO₂分離プロセスのマルチスケール設計 (名古屋大1)○藤井陽太1, 松田丰悟1

2A13(14:45~15:00)マイクロ有機ランキンサイクルモジュールのモ デルベースデザイン

(名古屋大1)○羽田泰幸1、藤井陽太1、松田圭悟1

休憩(15:00~15:15)

司会 松田圭悟氏(名古屋大学)(15:15~16:15)

2A14(15:15 \sim 15:30)Hybrid SVGD·HMC inference for identifying microkinetic models of NO $_x$ adsorption process

(Science Tokyo¹, Univ. Tokyo²) OJ. Liu¹, T. Wijakmatee¹,

H. Matsumoto¹, T. Tago¹, M. Ogura², T. Onishi²

2A15(15:30~15:45)持続可能な社会の実現に貢献する材料設計技術 (富士通¹)○實宝秀幸¹

2A16(15:45 \sim 16:00)Imubit's AI optimization in closed loop control for plant operation (IMUBIT¹) \bigcirc E. Tan¹

2A17(16:00~16:15)ソフトセンサを活用した保全費削減 (出光 1)○木畑 聡 ¹

休憩(16:15~16:30)

司会 竹内健史氏(出光興産)(16:30~17:15)

2A18(16:30~16:45)数値流体解析を用いた水素化脱硫装置 OH 配管 における腐食開孔トラブル要因の検討

(コスモ石油 1)○鈴木伸也 1,長谷山翔真 1,森永正隆 1

2A19(16:45~17:00)アセットオペレーションマネジメント(AOM) と最新テクノロジー

(横河ソリューション1)自井呂尚1,○秋庭智泰1

2A20(17:00~17:15)燃料ガス変動を反映した製油所/工場からの CO₂排出量のオンラインデジタル化

(E テックコンサル 1)〇本田達穂 1

B 会場 (2F · 福寿)

司会 長谷川慎吾氏(横浜国立大学)(13:00~14:15)

2B07(13:00~13:15)Pb 導入 MFI ゼオライト触媒による高効率エタン脱水素反応 (工学院大 ¹, JST-PRESTO²)○竹内笙子 ¹, 並木則和 ¹, 前野 樺 ¹.²

2B08(13:15~13:30)Cu-CHA 触媒の活性点局所構造によるメタノ ール直接合成活性の変化

(熊本大1)○大山順也1, 髙橋大地1, 粟屋恵介1, 町田正人1

2B09(13:30~13:45)Cu イオン交換ゼオライトを用いたジメチルエーテルカルボニル化反応 (北海道大 1, JASRI², 愛媛大 3) ()多田昌平 1, 西川 創 1, 本間徹生 2, 菊地降司 1, 城塚達也 3

2B10(13:45~14:00)Cu 担持ゼオライト成形体触媒上でのトルエン 気相接触酸化反応による p-クレゾールの一段階合成 (神戸大¹)○後藤涼平¹, 守谷彩花¹, 市橋祐一¹

2B11(14:00~14:15)水を酸素源としたシクロヘキサン電解酸化によるシクロヘキサノンの合成 (埼玉大¹)○白木拓翔¹, 黒田彪流¹, 袴田拓海¹, 鈴木崇哲¹, 黒川秀樹¹, 荻原仁志¹

休憩(14:15~14:30)

司会 大山順也氏(熊本大学)(14:30~15:45)

2B12(14:30~14:45)液相フロー反応器による機能性化学品向けスルホンの長時間連続合成 (産総研¹, 東京大²)○今 喜裕¹, 秦 春奈¹, 小野澤俊也¹, 小林 修¹.²

2B13(14:45~15:00)アレーンと酢酸の酸化的カップリング反応における PtRu 酸化物クラスターの相乗的触媒作用

(横浜国大¹, NIMS², 科学大³)○長谷川慎吾¹, 中村汐穏¹, 原野幸治².³, 本倉 健¹

2B14(15:00~15:15)Pd-アミン固定化触媒を用いた触媒量塩基で進行する鈴木・宮浦カップリング

(横浜国大¹)○本田麻里子¹, 坂井俊一¹, 長谷川慎吾¹, 本倉 健¹

2B15(15:15~15:30)担持 Au 触媒を用いた α,β-不飽和カルボニル化 合物の 1.4-ジシリル化

(都立大1)○佐藤勇志1,三浦大樹1,宍戸哲也1

2B16(15:30~15:45)担持金属ナノ粒子表面へのポリオキソメタレートの逐次修飾とその触媒応用 (都立大¹)○Jung, J.¹, 福田正次¹, 吉川聡一¹, 河底秀幸¹, 山添誠司¹

C会場(3F・右近)

司会 石田玉青氏(大阪公立大学) (13:00~14:00) 2C09(13:00~13:15)マイクロ波援用メタンドライ改質における触媒

(九州大1)○濱島達也1, 杉山武晴1, 北條 元1, 永長久寬1

活性評価と昇温特性の解析

2C10(13:15~13:30)非定常メタンドライリフォーミング反応へのマイクロ波加熱の利用 (産総研¹)○笹山知嶺¹,宮崎眞太¹,小野祐耶¹,高坂文彦¹,劉 彦勇¹,倉本浩司¹

2C11(13:30~13:45)Direct CO₂ capture from air by liquid-solid phase separation using cyclohexyl-substituted diamines (Tokyo Metropolitan Univ.¹)○X. Xue¹, X. Li¹, S. Kikkawa¹, H. Kawasoko¹, S. Yamazoe¹

2C12(13:45~14:00)アミノポリマー内包中空炭素による光駆動型 CO₂吸着回収材の開発

(大阪大1)○下村花未1,桑原泰隆1,山下弘己1

休憩(14:00~14:15)

司会 石川理史氏(東京科学大学)(14:15~15:30)

2C13(14:15~14:30)異種金属ドープ In 酸化物触媒を用いた CO₂ 水 素化による光熱メタノール合成

(大阪大1)○杉浦凌介1,桑原泰隆1,山下弘巳1

2C14(14:30~14:45)低温メタン化反応を駆動する Ru 担持触媒の開発と 3D 積層造形反応管への応用

(大阪大1)○森 浩亮1、金 孝鎮1、中野貴由1

2C15(14:45~15:00)固体酸化物電気化学セルを用いた合成メタン製造 (産総研¹)○堀口元規¹, 山口十志明¹, 鳥海 創¹, 舘野拓之¹, Develos·Bagarinao, K.¹, 岸本治夫¹, 望月剛久¹

2C16(15:00~15:15)二酸化炭素のメタネーション反応—Ni 系触媒の担体の検討—

(北見工大1)〇奥村公陽1, 今井宗矩1, 岡﨑文保1, 坂上寛敏1

2C17(15:15~15:30)欠陥を豊富に有するメタルフリーカーボン触媒 を用いた電気化学的 CO₂還元による CO 生成

(大阪大¹)○高田龍司¹, 三宅浩史¹, 内田幸明¹, 西山憲和¹ 休憩(15:30~15:45)

司会 永長久寛氏(九州大学)(15:45~16:45)

2C18(15:45~16:00)二元機能触媒の固定層および移動層を用いた CO₂の水素化プロセスに関する化学反応を伴う物質移動解析 (産総研¹)○小野祐耶¹,宮崎眞太¹,笹山知嶺¹,高坂文彦¹, 倉本浩司¹

2C19(16:00~16:15)水素スピルオーバー駆動型 CO2水素化反応の開発 (大阪大¹)○木俵拓海¹, 俊 和希¹, 森 浩亮¹

2C20(16:15~16:30)アルカリ金属添加担持 Rh-MoO_x 触媒による CO₂水素化 (都立大 ¹)○佐藤拓真 ¹,神谷悠聖 ¹,魏 増皓 ¹,三浦大樹 ¹,宍戸哲也 ¹

2C21(16:30~16:45)金属 3D 積層造形触媒反応管の開発と CO₂水素 化によるギ酸合成

(大阪大1)○林田直之1, 金 孝鎮1, 森 浩亮1

2025 年郡山大会プログラム(10 月 31日・午後)

D 会場 (3F・桜)	E 会場(3F・中央)	F 会場(3F・橘)
	司会 雨宮 正臣氏(JPEC)(13:00~13:45)	司会 川井健史氏(INPEX)(13:00~14:15)
	2E09(13:00~13:45)【招待】NEDO における合成燃料の技術開発	2F07(13:00~13:15)当社における坑井健全性管理と課題
司会 菅野 充氏(日揮ホールディングス)(13:15~14:30)	に関する取り組みについて	(ENEOS Xplora¹)○吉田宣生 ¹
2D10(13:15~13:30)アンモニアボラン加水分解用金属触媒におけ	(NEDO¹)○定兼 修 ¹	2F08(13:15~13:30)JAPEX 日高トラフプロジェクトの取り組み
る担体効果		と展望
(香川大¹, 京都工繊大²)○和田健司¹, 趙 波¹, 余 函¹,		(石油資源開発 1)○本田史紀 1,中川裕幸 1
栗原亮介 1, 上村 忍 1, 川崎翔馬 2, 下村郭登 2, 細川三郎 2		2F09(13:30~13:45)JAPEX における米州事業の紹介と今後の展望
2D11(13:30~13:45)Ni 担持スピネル触媒によるアンモニア分解反応		(石油資源開発1)○遠藤健司1
(広島ガス 1)〇木村 保 1		2F10(13:45~14:00)シェール革命の市場・商品・技術トレンドを振
2D12(13:45~14:00)Carbon-based non-noble metal catalysts for	休憩(13:45~14:00)	り返る
sustainable ammonia production		(JOGMEC1)○伊原 賢 1
(Toyota Tech. Inst.¹, Nagoya Univ.², NIT-Numazu³) ○K. De Silva¹, T. Naito², K. Sato², K. Inazu³, K. Nagaoka²	= A ## /= # /- # / - # /	2F11(14:00~14:15)石油開発業界における産学連携教育モデルの
OK. De Silva ² , 1. Natto ² , K. Sato ² , K. Inazu ³ , K. Nagaoka ² 2D13(14:00~14:15)電場触媒反応を適用した低温域アンモニア分	司会 佐藤一仁氏(コスモ石油)(14:00~15:15)	実践と効果 (環境カウンセラーズぐんま 1, 一関高専 2)
2D13(14-00~14-15)電場服媒及応を適用した低温域ケンモニケガ 解による水素製造	2E10(14:00~14:15)液体合成燃料製造用 SOEC 共電解特性と課題 (産総研¹)○田中洋平¹, 山地克彦¹, 高田尚樹¹, Kuo, P.¹	○金田英伯 ¹ ,貝原巳樹雄 ²
「早稲田大 ¹ , ヤンマーHD ²)○下居 響 ¹ , 林 美桜 ¹ , 大淵ゆきの ¹ ,	(産総研 り) 田中洋平 り、田地兄彦 り、高田同樹 り、Kuō, P. 1 2E11(14:15~14:30)SOEC 共電解を用いた FT 反応用合成ガス製造	
	ZEII(14·13~14·30)SOEC 共電解を用いたFI 反応用合成ガス製造 について	
2D14(14:15~14:30)CeO ₂ の結晶集合制御が電場アンモニア合成に	(JPEC¹)○渡邉治彦¹	
及ぼす担体効果 (早稲田大1,三井金属鉱業2)○清田怜子1,	2E12(14:30~14:45)酸化サマリウム担持コバルト触媒による CO ₂	
中山怜香¹,前田竜駒¹,三瓶大志¹,比護拓馬¹,板東芳朗²,	直接 FT 合成	
駒野谷将 ² , 中原祐之輔 ² , 関根 泰 ¹	(成蹊大 ¹ , 静岡大 ²)〇内田碧葉 ¹ , 吉田颯翔 ¹ , 大森惇史 ¹ ,	
	内野壮貴 1,後藤樹幹 1,叶 洪 1,田代啓悟 2,里川重夫 1	
休憩(14:30~14:45)	2E13(14:45~15:00)炭化鉄触媒の結晶構造が CO2直接 FT 合成反	
	応に与える影響 (成蹊大 1, 静岡大 2)〇小水大輔 1,	
司会 佐藤勝俊氏(名古屋大学)(14:45~15:45)	柳田晃秀 1, 叶 洪 1, 田代啓悟 2, 里川重夫 1	
2D15(14:45~15:00)再生可能エネルギーの変動吸収設備を含めた	2E14(15:00~15:15)FT 合成テールガス有効利用のための改質触媒	
水素製造プロセス全体の最適化シミュレーション	の反応性 (成蹊大¹)○古屋和真¹, 岡本真之介¹,	
(ENEOS¹)○箱 龍介¹	初澤元哉 1, 泉谷健介 1, 叶 洪 1, 里川重夫 1	
2D16(15:00~15:15)気象ビッグデータを活用可能なプロセスシミ		
ュレーションモデルの開発 (長岡高専1,エネルギー	休憩(15:15~15:30)	
プロセスシステム ² , オメガシミュレーション ³)○熱海良輔 ^{1,2} ,		
金内大洋2,羽田泰幸2,中野悠2,野口星耶3	司会 賈 慶鑫氏(出光興産)(15:30~16:45)	
2D17(15:15~15:30)不均一系金触媒を用いた芳香族化合物への CO ₂ 挿入反応によるカルボン酸合成 (都立大 ¹ ,九州大 ² ,	2E15(15:30~15:45)CO ₂ からの直接 FT 合成におけるペロブスカイ	
***	ト由来 Co 触媒の開発	
村山 徽 3 ,嶋田哲也 1 ,高木慎介 1 ,石田玉青 4	(早稲田大¹)○深谷泰世¹, 酒井 求¹, 松方正彦¹ 2E16(15:45~16:00)固定床流通式反応装置を用いた FT 合成におけ	
2D18(15:30~15:45)AEM 水電解セルにおけるアルコール系有機物	2B16(15:45~16:00)固定床流迪式反応装置を用いたFT合成におり る二元機能触媒の影響	
添加の影響	○ 二 元 機 能 性 操 の 影 答(JPEC¹)○網 谷 直 樹 ¹	
(産総研¹)〇舘野拓之¹, 陳 仕元¹, 望月剛久¹	2E17(16:00~16:15)FT ベンチ装置による液体合成燃料製造検討	
	(第2報) 反応条件による影響評価	
	(JPEC¹)○教蓮 亨¹	
	2E18(16:15~16:30)FT ベンチ装置による液体合成燃料製造検討	
	(第3報) 実証用触媒の性能評価 (JPEC¹)○雨宮正臣 ¹,	
	教蓮 亨 ¹, 佐藤 行 ¹, 関沢礼子 ¹, 大山信雄 ¹	
	2E19(16:30~16:45)FT 合成粗油のポスト処理による灯油や軽油燃	
	料基材化の検討	
	(コスモ石油 ¹ , JPEC²)○濱田夏輝 ¹ , 佐藤一仁 ¹ , 飯塚喜啓 ¹ ,	
	岡本憲一2, 大森敬朗2, 木濟寬史2, 今井章雄2, 田畑光紀2	